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Survivin, cancer networks and 
pathway-directed drug discovery
Dario C. Altieri

Abstract | Although there is no shortage of potential targets for cancer 
therapeutics, we know of only a handful of molecules that are differentially 
expressed in cancer and intersect multiple pathways required for tumour 
maintenance. Survivin embodies these properties, and orchestrates integrated 
cellular networks that are essential for tumour cell proliferation and viability. 
Pursuing the nodal functions of survivin in cancer might lead to the development 
of global pathway inhibitors with unique therapeutic potential.

Our understanding of cancer genes has 
improved tremendously over the past three 
decades1, but this has not translated into 
equivalent benefits to cancer patients. Cases 
of improved survival mostly reflect early 
detection or prevention, rather than improved 
treatment (Surveillance Epidemiology and 
End Results). The efficacy of mainstay cancer 
therapies, cytotoxics and radiation, has reached 
a plateau in the treatment of many cancers, and 
there is an urgent sense that improvements 
must now come from fresh approaches2.

Backed by better knowledge of cancer 
genetics1, we now attempt to produce drugs 
that eliminate tumour cells while sparing 
normal tissues3. This target-orientated 
approach is aimed specifically at genes 
whose products are involved in cancer, that 
are conceptually important for tumour 
maintenance, and that are ‘drugable’, typically 
by chemical-library screening or antibody 
production3. This strategy has produced a 
few impressive drugs that have revolution-
ized the treatment of certain tumours, for 

instance, rituximab as therapy for non-
Hodgkin lymphoma and imatinib in the 
management of chronic myelogenous leu-
kaemia3. However, the overwhelming major-
ity of cancers defy single-molecule-directed 
therapy, showing either transient benefits or 
no benefit at all. Even the rare tumours that 
are driven, at least at the onset, by only one 
signalling pathway become quickly resistant 
to single-molecule-directed therapy.

This probably reflects the extraordinary 
heterogeneity of cancer, which involves 
hundreds of mutated and deregulated genes, 
aberrant expression of microRNAs, genetic 
instability and aneuploidy1. Leaving behind 
the fascination with ‘magic bullet’-like 
drugs, new agents are being pursued for 
broader specificity in the hope that they will 
disable multiple signalling pathways4. What 
has been less appreciated, and is the focus 
of this article, is that investigating tumour 
diversity might lead to the identification of 
nodal proteins — proteins that are involved 
in multiple signalling mechanisms in tumour 
maintenance. Examples of nodal proteins 
that are upregulated, mutated or functionally 
exploited in cancer already exist. For instance, 
signalling through the epidermal growth 
factor receptor (EGFR) functions as a node, 
integrating extracellular cues with a panoply 
of downstream signalling responses, affecting 
cell proliferation, cell survival, differentiation 
and migration5. Similarly, heat shock protein 
90 (HSP90, also known as HSP90AA1) is 
a node overseeing protein-folding qual-
ity control in all signalling hallmarks of 
cancer, such as cell proliferation, survival, 
immortalization, invasion, angiogenesis 
and resistance to growth-inhibitory signals6. 
Drugs targeting such nodal proteins might 
go beyond single-molecule antagonists and 
provide pathway inhibitors, globally affecting 
multiple signalling circuits in tumour cells, 
regardless of complexity, heterogeneity or 
genetic make-up.

Experimental evidence accumulated 
over the past 10 years suggests that survivin 
(encoded by BIRC5)7, a small inhibitor of 
apoptosis (IAP) protein8 sharply differentially 
expressed in cancer7, might be another 
paradigm of a nodal protein, with unique 
prospects for drug discovery. Good progress 
has been made in elucidating the function 
of survivin, and important milestones have 
been achieved in both basic and translational 
research (TIMELINE). This article will not deal 
with the specific aspects of survivin biology: 
several excellent reviews covering these 
topics have been published, and the reader is 
directed to these articles for a more in-depth 
perspective9–11. Here, an effort will be made 
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to build a unifying model for the multiple 
functions of survivin, the implications of 
these functions for tumour maintenance and 
their suitability for novel cancer therapeutics.

The multiple facets of survivin
One unifying thread stands out in the biology 
of survivin: its link to multiple pathways of 
cellular homeostasis. To molecular biolo-
gists, survivin is encoded by a complex gene, 
which is extensively alternatively spliced, 
and its expression is finely regulated by 
transcriptional12 and post-transcriptional 
mechanisms13. Biochemists view survivin as 
a structurally unique IAP protein14, expressed 
in several subcellular compartments15 
and dynamically regulated by multiple 
post-translational mechanisms16,17. To cell 
biologists, survivin is an essential regulator 
of cell division, a modulator of apoptotic 
and non-apoptotic cell death, and a stress 
response factor ensuring continued cell 
proliferation and cell survival in the face of 
unfavourable milieus7,9. Survivin is a master 
switch of organ and tissue homeostasis in the 
eyes of geneticists, required to preserve the 
viability and proliferative potential of mul-
tiple tissue districts18. To cancer biologists, 
survivin is one of the most tumour-specific 
molecules19, which antagonizes apoptosis7, 
promotes tumour-associated angiogenesis20 
and acts as a resistance factor to various 
anticancer therapies20,21. Finally, to clinical 
investigators, survivin is a model for bench-
to-bedside cancer research, a molecular 
signature of unfavourable disease outcome22, 

a diagnostic biomarker of tumour onset 
and recurrence23, and a validated target for 
cancer drug discovery24. Although these 
are disparate and seemingly distant fields of 
investigation, only a holistic understanding 
of survivin function across the different areas 
can unlock the potential of the survivin  
networks for novel cancer therapeutics.

Unifying the survivin controversies
Although the published record on survivin is 
fairly consistent across areas of investigation, 
dissecting the multifaceted complexity of its 
biology (BOX 1) has not been without contro-
versies. These largely reflected gaps in our 
knowledge and, with a better understanding 
of the pathways involved, most of the debated 
issues found reasonable explanations. One 
hot topic revolved around the function, or 
functions, of survivin during cell division. In 
particular, it was difficult to reconcile a some-
what controversial localization of survivin to 
microtubules25 and its proposed function in 
spindle formation7 with the role of survivin as 
a kinetochore-associated chromosomal pas-
senger protein, a group of molecules known 
to regulate late-phase mitosis or cytokinesis9. 
New data have probably settled the debate. 
It is now accepted that survivin exists in 
immunochemically distinct pools localized in 
various subcellular compartments, including 
kinetochores and microtubules15, and that 
chromosomal passenger proteins, including 
survivin26, do contribute to spindle assembly27 
by nucleating microtubules around mitotic 
chromosomes.

It was also extensively debated whether 
survivin was, in fact, a genuine inhibitor of 
apoptosis. Despite unanimous published 
evidence that survivin antagonized various 
forms of cell death in vivo, there was no 
functional or structural data that it did so by 
inhibiting caspases14, as was expected from 
an IAP8. Moreover, a survivin orthologue in 
Caenorhabditis elegans, a model organism 
extensively used to study cell death, did not 
inhibit apoptosis28. With new data becoming 
available, this debate is also probably settled. 
We now know that except for one member, 
X-linked IAP (XIAP, also known as BIRC4), 
all IAPs antagonize apoptosis independently 
of direct caspase inhibition8, that survivin-
like molecules in model organisms, such 
as Drosophila melanogaster29 or yeast30, do 
in fact inhibit apoptosis, and that survivin 
preferentially antagonizes cell death 
upstream of effector caspases31, a pathway 
that is not operative in C. elegans.

Survivin nodes
One of the signature features of survivin is 
the surprisingly high number of molecules, 
regulators, transcriptional networks and 
modifiers that, directly or indirectly, are 
involved in its functions. Such complex-
ity cannot be appreciated by thinking of 
survivin in isolation, but by delineating con-
nectivity maps that link survivin to multiple 
signalling circuits32. Such a systems-biology 
approach has been used to recapitulate the 
extraordinary heterogeneity of tumour cells, 
particularly with respect to multilayered 

Timeline | Milestones in survivin research

Conserved  
role for survivin 
in mitosis 
found86.

First survivin 
antisense 
experiments 
carried out87.

1997	 1998	 1999	 2000	 2001	 2002	 2003	 2004	 2005	 2006	 2007

Molecular 
cloning of 
survivin 
gene83.

Function of survivin in 
mitosis identified84.

First report of survivin as 
a negative prognostic 
factor in cancer85.

Crystal structure of 
survivin determined14, 88.

Survivin–CDK1 
interaction revealed16.

First survivin knockout 
study reported76.

Survivin identified 
as a urine 
biomarker for 
bladder cancer23.

Preclinical 
antagonists 
developed and 
characterized89, 90.

Role for survivin in 
checkpoint control 
discovered25, 92.

First survivin cofactor 
for inhibition of 
apoptosis (HBXIP) 
described58.

Survivin–HSP90 
network 
identified57.

XIAP as a survivin cofactor 
for inhibition of apoptosis 
identified93.

Survivin 
conditional 
knockout mice 
created42, 77.

Vaccine 
targeting 
survivin 
reaches phase I 
trials94, 95.

New survivin 
peptide to generate 
a general cancer 
vaccine tested97.  

Survivin 
proposed as a 
biomarker in 
patients treated 
with lapatinib98.

Epigenetic 
regulation of 
survivin 
identified13.

Survivin antisense and YM155 
(small-molecule inhibitor) reach 
phase I trials70.

Direct regulation of microtubule 
dynamics by survivin described43.

Role of nicotine in stimulating 
survivin expression in lung cancer 
identified99.

Differential post-translational 
modifications in mitochondrial 
survivin identified59.

Requirement for survivin in 
maintenance of stem cells found100.

Role of survivin in G1/S transition 
in T cells proposed101.

New DNA  
vaccine 
developed96. 

Use of survivin promoter for 
cancer-specific delivery of 
cytotoxic genes tested91.

Survivin found to be regulator of 
angiogenesis20.

Survivin–p53 network 
identified12, 41.

CDK1, cyclin-dependent kinase 1; HSP90, heat shock protein 90; XIAP, X-linked inhibitor of apoptosis protein.
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organization, modularity into semi-autono-
mous subsystems and redundancy4. Using 
this approach as a working model, survivin 
emerges as a central node in multiple cellu-
lar networks, from which parallel signalling 
pathways branch out to regulate additional 
aspects in cellular homeostasis.

The survivin cell-division network
Inspecting the panoply of interactions 
that characterize the role of survivin in 
cell division offers a glimpse into the 
complexity and diversity of the survivin 
network (FIG. 1).

Subnetwork 1: survivin functions in the 
chromosomal passenger complex. As indi-
cated above, survivin is a chromosomal 
passenger protein33, and targets other 
molecules in a chromosomal passenger 
complex, including Aurora kinase B 
(AURKB), inner centromere protein 
antigens (INCENP) and borealin (also 
known as CDCA8), to kinetochores34. 
This trafficking pathway is essential, and 
mislocalization of the complex causes cata-
strophic mitotic defects. It is not surprising 
that parallel mechanisms have evolved to 
ensure redundancy and independently 
contribute to kinetochore targeting of the 
chromosomal passenger complex. What 
is surprising is that these additional path-
ways are also centred on survivin. In yeast, 
these include binding of survivin to a regu-
lator of chromosome segregation called 
shugoshin 2 (Ref. 35), and recruitment of 
the mitotic exit network36, which contrib-
utes to inactivation of cyclin-dependent 
kinases (CDKs), completion of cytokinesis 
and initiation of G1 gene expression. In 
human cells regulatory phosphorylation of 
survivin by Aurora kinase B37 and sequen-
tial cycles of survivin ubiquitylation and 
deubiquitylation by the enzyme hFAM17 
have been described. Although these are 
intriguing similarities, it is also likely that 
survivin orthologues in different model 
organisms have evolved considerable 
diversity in molecular interactions and 
cellular functions. A parallel trafficking 
subsystem has emerged that implicates 
the RAN–GTP pathway, by binding of 
survivin to exportin 1 (XPO1, the human 
homologue of yeast Crm1) (Ref. 11), which 
is a RAN effector molecule that regulates 
kinetochore fibre assembly, or through the 
recruitment of the RCC1 family protein 
TD60 (also known as RCC2) (Ref. 38), 
which is a guanine nucleotide-exchange fac-
tor that also assembles in the chromosomal 
passenger complex (FIG. 1).

 Box 1 | The main features of survivin

Biochemistry
•	Member of the inhibitor of apoptosis (IAP) family, containing a single baculovirus IAP repeat (BIR) 

(see figure).

•	Homodimeric structure.

•	Known phosphorylation sites (kinase): Thr34 (cyclin-dependent kinase 1 (CDK1)); Thr117 (Aurora 
kinase B); Ser20 (protein kinase A (PKA)).

•	Other known post-translational modifications: ubiquitylation of Lys23, Lys62, Lys78 and Lys79 by 
ubiquitin Lys63 ligases.

•	Known binding sites for protein partners validated by direct protein–protein interactions, NMR, 
X-ray crystallography and site-directed mutagenesis: polymerized microtubules and 
electrostatic interactions with chromosomal passenger proteins, (carboxy terminus α helices, 
inner centromere protein antigens (INCENP), Lys112 and Lys120; borealin, Lys110, Lys121 and 
Arg132); XPO1 /nuclear export sequence (NES, Val89–Leu98); SMAC (Leu64, Leu87); X-linked 
IAP (XIAP) (Lys15–Met38); heat shock protein 90 (HSP90, Lys79–Lys90); Aurora kinase B (Asp70, 
Asp71); mitochondrial-targeting sequence (survivin-∆Ex-3 C terminus); borealin and INCENP 
(dimer interface hydrophobic pocket: Leu6, Trp10, Phe93, Phe101 and Leu102).

Cell biology
•	Cell-cycle expression at mitosis (deregulated in cancer with high expression in interphase).

•	Localization to the mitotic apparatus: centrosomes, kinetochores, mitotic spindle microtubules, 
spindle poles, central spindle midzone and midbodies.

•	Other known subcellular localizations: cytosol, mitochondria and nuclei.

Functions
•	Evolutionarily conserved, essential role in mitosis.

•	Role in chromosomal attachment, spindle-assembly checkpoint.

•	Role in S-phase progression (thymocytes, activated T cells).

•	Inhibition of caspase-dependent apoptosis and caspase-independent cell death.

•	Inhibition of mitochondrial and death receptor (tumour necrosis factor-related apoptosis-
inducing ligand (TRAIL))-mediated apoptosis.

Tissue expression
•	Ubiquitous in embryonic and fetal development.

•	Undetectable in most adult tissues.

•	Low expression in adult basal colonic epithelium and CD34+ haematopoietic progenitors.

•	Overexpressed in all human cancers, independently of mitotic index.

Phenotypes of knockout studies in mice
•	Germline knockout: embryonic lethality (E 3.5)76.

•	Conditional knockout in thymocytes: impaired cell proliferation77, cell cycle arrest, mitotic 
spindle defects and apoptosis42.

•	Conditional knockout in neuronal precursors78: perinatal lethality, reduction in brain size, 
apoptosis and increased caspase 3 and 9 activity.

•	Conditional knockout in endothelial cells79: embryonic lethality, haemorrhages, neural tube 
closure defects and hypoplastic endocardial cushions.

•	Conditional knockout in haematopoietic progenitors80: mortality, bone-marrow ablation, loss of 
haematopoietic progenitors and erythropoiesis defects.

Thr117

BIR
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Subnetwork 2: spindle formation and 
checkpoint control. Once localized in the 
chromosomal passenger complex, survivin 
contributes to chromatin-associated spindle 
formation27. This process involves the stim-
ulation of Aurora kinase B activity, which 
in turn phosphorylates the mitotic cen-
tromere-associated kinesin (MCAK, also 
known as KIF2C)26 and removes its micro-
tubule depolymerizing activity. The role 
of survivin in spindle assembly connects 
to parallel pathways of genomic fidelity, 
in which survivin has been characterized 
as a sensor of kinetochore–microtubule 
attachment39, a component of the spindle-
assembly checkpoint that is activated by a 
lack of microtubule tension25. It is from this 
checkpoint function of genomic surveillance 
that the survivin network further intersects 
with mechanisms of apoptosis regulation. 

Accordingly, activation of the checkpoint 
kinase CHK2 (encoded by CHEK2) by 
DNA damage stimulates a rapid discharge 
of the mitochondrial pool of survivin in 
the cytosol40. This pathway does not seem 
to participate in cell division, but preserves 
the viability of tumour cells during a 
protracted G2 block by antagonizing DNA-
damage-induced apoptosis40. A parallel 
survivin–p53 subsystem has evolved to 
oppose this effect. DNA damage also stabi-
lizes p53, but in this case p53 functions as 
an efficient repressor of BIRC5 transcrip-
tion, through occupancy of a binding 
site in the BIRC5 promoter41, changes in 
chromatin structure affecting promoter 
accessibility12, or epigenetic modifications 
involving DNA cytosine methyltransferase 1 
(Ref. 13). The net effect is an abrupt 
lowering of survivin levels, which itself 

is a stimulus to stabilize p53 (Ref. 42), 
and further reduce survivin expression. 
Therefore, balancing a survival effect of 
CHK2 (Ref. 40), the p53 subsystem aims to 
eliminate survivin expression during DNA 
damage, thus tilting the balance towards 
stable cell-cycle arrest and apoptosis. One 
can specualate that loss of p53, as occurs 
frequently in human cancer, might cause 
unrestrained survivin expression resulting 
in enhanced cell viability, impaired check-
point function and increased propensity to 
aneuploidy.

Subnetwork 3: microtubule-associated 
survivin. In addition to its localization in the 
chromosomal passenger complex, a fraction 
of mitotic survivin directly assembles on 
polymerized microtubules7. Similarly to kine-
tochore survivin26, microtubule-associated  

Figure 1 | Connectivity map of the survivin networks at cell division. 
Each of the node shapes denotes the function of the interacting protein or 
group of proteins. The connectivity map was generated from available 
published data using the Ingenuity Pathway Analysis (Ingenuity Systems). 
Data are compiled from interactions validated in multiple model organisms. 
Not all proteins indicated have human homologues. AURK, Aurora kinase; 

CDC, cell-division cycle; CDK, cyclin-dependent kinase; CENPA, centro-
mere protein A; CHK2, checkpoint kinase 2; CRM1, chromosome region 
maintenance protein 1; INCENP, inner centromere protein antigens; MCAK, 
mitotic centromere-associated kinesin; RB1, retinoblastoma 1; TERT, telom-
erase reverse-transcriptase; TOP2A, topoisomerase IIα; TUBB1, tubulin b1; 
UFD, ubiquitin fusion degradation.
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survivin contributes to spindle formation, 
but this involves a different pathway of 
enhanced microtubule stability through 
suppression of microtubule dynamics, 
reduction of microtubule nucleation from 
centrosomes, increased acetylated tubulin 
content and increased resistance to nocoda-
zole-induced microtubule depolymerization, 
in a pathway that is independent of Aurora 
kinase B43. This survivin network also 
branches out to parallel pathways of genomic 
integrity and intersects mechanisms of apop-
tosis. Through its association with CDK1 
(also known as CDC2), microtubule-bound 
survivin becomes phosphorylated at mitosis 
on Thr34 (Ref. 16). This step is crucial to 
stabilize survivin at mitosis and efficiently 
counteract apoptosis of dividing cells, or 
in response to spindle poisons16. The anti-
apoptotic environment created by CDK1 is 
not limited to its effects on survivin. CDK1 
phosphorylation of caspase 9, an upstream 
initiator of mitochondrial cell death, abol-
ishes its anti-apoptotic activity and antago-
nizes cell death induced by anti-mitotic 
agents44. Conversely, pharmacological 
inhibition of CDK1 removes this cytoprotec-
tive environment, and triggers tumour cell 
death, either in sequential combination with 
taxanes45, or selectively in tumours driven by 
the MYC oncogene46 (FIG. 1).

The survivin anti-apoptotic network
The role of survivin in the inhibition of 
apoptosis has a similar degree of complexity, 
connecting to multiple parallel pathways that 
regulate gene expression, protein–protein 
interactions and mitochondrial functions 
(FIG. 2).

Subnetwork 1: providing a heightened cell-
survival threshold. In addition to a stable 
and protracted mitotic arrest, acute lowering 
of survivin expression (for instance, using 
antisense, small interfering RNA, ribozymes 
or dominant-negative mutants) has often 
been associated with spontaneous apoptosis, 
depending on the cell type and its comple-
ment of checkpoints. Accordingly, pathways 
that regulate gene expression and control 
protein stability extensively intersect with 
the survivin cytoprotection network. Many 
prototype tumour-suppressor genes result 
in efficient silencing of the BIRC5 promoter. 
These include the adenomatous polyposis 
coli protein47, which is often deleted or 
mutated in colorectal cancer, p53 (see above), 
fragile histidine triad gene (FHIT)48, which 
is a pro-apoptotic molecule that binds and 
hydrolyses diadenosine polyphosphates, 
and PML4, a pro-apoptotic promyelocytic 

leukaemia protein49. By contrast, oncogenic 
factors have been shown to promote BIRC5 
transcription. This is the case for TCF4– 
β-catenin50, a developmentally regulated 
transcriptional activator complex participat-
ing in colon cancer, signal transduction 
and activator of transcription 3 (STAT3)51, 
which is an oncogenic transcription fac-
tor involved in cytokine signalling, and 
a group of E2F transcription factors52, 
which function in the G1/S transition of 
the cell cycle. Of these regulators, discrete 
binding sites on the BIRC5 promoter have 
been identified for TCF4, p53 and STAT3 
(Ref. 53), suggesting that these molecules 
might directly control BIRC5 expression. 
A second post‑transcriptional network 
that controls survivin mRNA or protein 
stability has also been characterized. This 
involves several factors: the mammalian 
target of rapamycin (mTOR, also known 
as FRAP1), which is required for stabil-
ity and translation of a cytosolic pool of 
BIRC5 mRNA54; intermediaries of growth 
factor receptor signalling, especially the 
phosphatidylinositol 3‑kinase–Akt axis, 
which has been frequently implicated in 
the modulation of survivin levels55; CDK1 
phosphorylation, which promotes increased 
survivin stability at mitosis16; and binding of 
survivin to molecular chaperones, including 
the aryl hydrocarbon receptor-interacting 
protein (AIP)56, and HSP90 (Ref. 57), which 
participate in survivin stability and subcel-
lular trafficking pathways. Pharmacological 
antagonists of some of these pathways are 
being tested for cancer therapy, and their 
ability to lower survivin levels may contribute 
to their anticancer activity. In addition, 
changes in survivin expression could provide 
an accessible biomarker of target validation 
for patients treated with inhibitors of HSP90 
(17‑AAG), the EGFR family (lapatinib) or 
CDK1 (flavopiridol).

Subnetwork 2: intermolecular cooperation. 
One of the crucial features of this cytoprotec-
tive network is that it relies on physical inter-
actions between survivin and other adaptor 
or cofactor molecules. This may explain why 
earlier studies with isolated recombinant sur-
vivin in a cell-free system did not show anti-
apoptotic effects14. In the cytosol, survivin 
associates with the hepatitis B X-interacting 
protein (HBXIP), and this complex, but not 
either protein alone, binds caspase 9 and 
inhibits mitochondrial apoptosis58. Survivin 
exhibits parallel interactions with other mem-
bers of the IAP gene family. One interaction 
involves XIAP, which binds the pool of sur-
vivin released from mitochondria in response 

to cell-death stimuli59, resulting in increased 
XIAP stability against proteasomal degrada-
tion and inhibition of apoptosis in vivo31. This 
pathway can be recapitulated in vitro with 
recombinant proteins with synergistic inhibi-
tion of caspase 3 and 9 activity. Assembly of 
the survivin–XIAP complex in vivo is regu-
lated in subcellular compartments, and phos-
phorylation of survivin on Ser20 by protein 
kinase A in the cytosol, but not in mitochon-
dria, disassembles the complex, and abolishes 
its anti-apoptotic function59. The interaction 
between survivin and the RAN–GTP effec-
tor XPO1 may also bridge cell division and 
cytoprotective networks, as it may be required 
to localize survivin for apoptosis inhibition in 
the cytosol. Conversely, a complex of survivin 
and cIAP1 (also known as BIRC2) might not 
participate in apoptosis inhibition, but seems 
to feed back on the regulation of survivin dur-
ing cell division60. Cells overexpressing cIAP1 
displayed extensive mitotic defects, cytokine-
sis failure and a propensity for chromosomal 
instability, suggesting that a survivin–cIAP1 
complex might antagonize the function of 
survivin in late-stage cell division60. Finally, 
survivin has been implicated in heterodimeric 
interaction with at least some of its alterna-
tively spliced forms61. With the caveats that 
these results were obtained using overexpres-
sion approaches, and that the balance of 
survivin dimers versus monomers in vivo is 
far from understood, it has been suggested 
that these complexes may also participate in 
cytoprotection61.

Subnetwork 3: mitochondrial dynamics. 
Recent evidence suggests that survivin 
cytoprotection hinges on a pool of the mol-
ecule compartmentalized in mitochondria, 
and released in the cytosol in response to 
cell death stimuli31. Accordingly, there are 
multiple signalling pathways of mitochon-
drial homeostasis that connect to survivin 
cytoprotection. First, although it is as yet 
unclear how survivin is transported to 
mitochondria, its regulated association 
with molecular chaperones, AIP56 or HSP90 
(Ref. 57), might contribute to this process, 
potentially through the import receptor 
complexes at the outer mitochondrial mem-
brane, TOM20 (also known as TOMM20) 
and TOM70 (also known as TOMM70A). 
Consistent with this model, recent data 
from our laboratory have demonstrated 
using a cell-free import assay that survivin 
is actively imported in purified mitochon-
dria (B. H. Kang and D.C.A., unpublished 
observations). Second, mitochondrial sur-
vivin is post-translationally modified, and 
this step is required for its anti-apoptotic 
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function. Only survivin that is kept unphos-
phorylated on Ser20 retains the ability to 
bind XIAP and antagonize cell death (see 
below), and this process may involve com-
partmentalized proximity in mitochondria 
between survivin and the broad spectrum 
phosphatase, PP2A, which dephosphor-
ylates survivin on Ser20 (Ref. 59). Third, 
once transported in mitochondria and 
properly processed, survivin binds SMAC 
(also known as DIABLO)62, a molecule 
that relieves the inhibitory effect of XIAP 
on caspases and thus promotes cell death. 
The actual physiological relevance of a sur-
vivin–SMAC complex in vivo has not been 

fully established, a caveat that might apply 
to other reported interactions involving 
survivin, for instance, when using supra-
physiological overexpression approaches. 
However, there have been reports that this 
interaction may regulate apoptosis directly, 
by sequestering SMAC away from XIAP63, 
or indirectly, by preventing altogether its 
release from mitochondria64.

In a parallel pathway, an alternatively 
spliced survivin variant, called survivin-
∆Ex-3, containing a novel carboxy terminus 
sequence due to a frameshift, has been 
shown to localize to mitochondria, where it 
interacts with BCL2 and inhibits caspase 3 

activity65. Because anti-apoptotic BCL2 pro-
teins function as inhibitors of mitochondrial 
permeability transition, this recognition 
would position survivin, or at least one of its 
spliced variants, in the regulation of mito-
chondrial membrane integrity. Variations 
of this pathway have been suggested, 
involving hyperphosphorylation of BCL2, 
and reduced activation of pro-apoptotic 
BCL2-associated X protein (BAX) by 
the survivin–Aurora kinase B complex, 
potentially upstream of caspase activation66, 
thus further dampening mitochondrial 
permeability. It is too soon to tell whether 
a broader basis exists for a role of survivin 
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in mitochondrial homeostasis, but it is 
intriguing that survivin-∆Ex-3 was recently 
shown to maintain mitochondrial mem-
brane potential and control the production 
of reactive oxygen species in response to 
cell-death stimuli67. It should be kept in 
mind that the actual abundance of survivin 
splice variants in tumour cells appears to 
be quite low. Although this does not negate 
a priori a role of these molecules in survivin 
regulation, definitive validation of this 
model awaits the availability of specific 
reagents capable of faithfully discriminating 
the various endogenous survivin isoforms 
in different cells and tissues.

Therefore, the survivin networks in cell 
division (FIG. 1) and cell death (FIG. 2) emerge 
as highly flexible signalling hubs, connect-
ing to multiple independent pathways of 
cellular homeostasis (FIG. 3). It seems plau-
sible to hypothesize that the cytoprotective 
and mitotic functions of survivin intersect 
at cell division. There is compelling experi-
mental evidence to support this model, 
as interference with survivin expression 
and/or function in synchronized cultures 
often culminates in a form of apoptosis of 
dividing cells called mitotic catastrophe. 
However, this is probably not the whole 
story, and survivin cytoprotection is prob-
ably operative in interphase as well. This is 
consistent with the fact that tumour cells 
have constitutively high levels of survivin 
in interphase in vivo and that cell-cycle-
regulated transcription of BIRC5 at mitosis 
cannot account for the expression of endog-
enous survivin in transgenic mice68, and 
with the dynamics of mitochondrial sur-
vivin, which are uncoupled from cell‑cycle 
progression59.

Survivin networks and drug discovery
A rationale for targeting survivin. 
Molecular profiling studies and retro-
spective analyses of patient cohorts have 
consistently identified the increased expres-
sion of survivin as a risk factor for cancer 
progression and poor prognosis69. In breast 
cancer, survivin expression might also have 
a role in predicting recurrence22. Although 
it is possible that distinct subcellular pools 
of survivin might differentially influence 
prognosis11, the survivin networks seem to 
confer on tumour cells a greater adaptabil-
ity, proliferative capacity and resistance to 
cell death, which translates into a clinically 
worse disease. However, the nodal func-
tions of survivin might constitute a unique 
Achilles’ heel for cancer cells, as a non-
redundant network of tumour maintenance 
that is unable to be circumvented (FIG. 3). 

Following this logic, putative survivin 
antagonists might function not as single-
protein inhibitors3 but, in fact, as pathway 
inhibitors4 that are suitable for disabling 
multiple signalling circuits in tumours, 
regardless of their heterogeneity or genetic 
make-up. Although it is likely that some of 
the survivin networks become operative in 
a specific spatial–temporal context, for 
instance, as cells approach mitosis, or dur-
ing the cellular stress response, therapeutic 
disabling of survivin may have global effects 
on tumour cells, conceptually similar to 
the therapeutic targeting of other nodal 
proteins in tumorigenesis — for instance, 
EGFR5 or HSP90 (Ref. 6).

The portfolio of survivin antagonists. 
Unfortunately, despite the efforts of many 
laboratories to elucidate the biology of 
survivin (Timeline), the portfolio of survivin 
antagonists available for clinical testing 
is small (TABLE 1). It includes molecules 
that specifically target survivin, including 
an antisense molecule (LY218130B) and 
transcriptional repressors (YM155 and EM-
1421), but also compounds that appear to 
perturb survivin expression and/or function 

(TABLE 1) indirectly, as part of a more global 
inhibition of cellular signalling pathways. 
Although potentially still valuable for 
anticancer activity, this makes it difficult 
to ascertain the relevance of each different 
signalling pathway being simultaneously 
targeted. The lack of a larger portfolio of 
truly survivin-directed antagonists probably 
reflects a common view in drug discovery 
that molecules that are not present on the 
cell surface, or that lack inhibitable catalytic 
activity, are not considered good targets4. In 
the case of survivin, one also has to acknowl-
edge that crystallographic data reveal little 
in the way of potential drugable sites, which 
are typically structural pockets of suitable 
geometry and hydrophobicity. Despite these 
challenges, the survivin antagonists that have 
succeeded in reaching the clinic generated 
promising results. Of the two small-molecule 
inhibitors of BIRC5 transcription, YM155 
produced impressive clinical responses in 
phase I trials of heavily pretreated cancer 
patients70, and EM-1421 generated encour-
aging results as a topical application in 
cervical intraepithelial neoplasia and is now 
in phase I trials71. Several phase II trials were 
also announced for the survivin antisense 

Figure 3 | Connectivity links between the survivin cell division and cell death networks. The 
functions of survivin intersect with mechanisms of cell division control, genomic fidelity, mitotic 
spindle assembly, subcellular trafficking, checkpoint regulation and apoptosis. CDK1, cyclin-
dependent kinase 1; CRM1, chromosome region maintenance protein 1; HSP90, heat shock 
protein 90; INCENP, inner centromere protein antigens; MCAK, mitotic centromere-associated 
kinesin; MEN, mitotic exit network; PKA, protein kinase A; SGO2, shugoshin 2; XIAP, X-linked 
inhibitor of apoptosis protein. 
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molecule LY2181308 (ClinicalTrials.gov), 
and for cancer vaccination protocols using 
survivin peptides72. However, this relatively 
small assortment of agents (TABLE 1) might 
not fully unlock the potential of survivin as a 
nodal cancer drug target.

Novel approaches to targeting survivin. 
Thinking of the survivin networks as outlined 
above might offer fresh opportunities for drug 
discovery. Although traditionally not viewed 
as easy to target, there is ample precedent that 
disruption of protein–protein interactions, 
especially those involving apoptosis regula-
tors, creates meaningful anticancer activity, 
manageable toxicity and drug-like properties 
that warrant clinical testing24. In this context, 
proof-of-principle agents that disrupt the 
physical complex between survivin and other 
network components — for instance, HSP90 
— have been identified73. A prototype of these 
compounds, the peptidomimetic shepherdin, 
which is a combined survivin and HSP90 
inhibitor, exhibited strong anticancer activity 
in vivo with no toxicity for normal tissues73, 
and its clinical development is now underway. 
It is conceivable that molecular disruption of 
other survivin-containing protein complexes, 
for instance, those involving SMAC62 or 
XIAP59, might disable survivin cytoprotection 
and trigger tumour cell death alone or, more 

likely, in combination with conventional45 or 
targeted46 anticancer agents, given the exten-
sive molecular and genetic complexity of most 
tumours by the time they are discovered.

Second, experimental evidence suggests 
that the survivin networks are finely regu-
lated, and even relatively small changes in 
survivin post-translational modifications37,45 
or binding to protein partners57,59 can cause 
protein mislocalization, disruption of molecu-
lar interactions and accelerated proteasomal 
destruction. On the basis of available evidence, 
it seems tumour cells cannot recover from 
loss or deregulation of survivin, and undergo 
immediate cell-cycle arrest and spontaneous 
cell death. Therefore, it is possible that the 
high-affinity binding of a small molecule to 
survivin might deregulate node dynamics 
and trigger cell-cycle arrest and apoptosis. 
High-throughput, affinity-based screening for 
small molecules that interact with apoptosis 
regulators is feasible, and candidate drug-like 
compounds with these characteristics, for 
instance, the BH3 mimetic ABT-737, are 
already in the clinic24.

Survivin antagonists and cancer networks 
One intriguing feature of the survivin 
networks is that many of the survivin-binding 
partners themselves behave as oncoproteins, 
as they are overexpressed, mutated or 

functionally exploited in tumours, as 
opposed to normal tissues (Supplementary 
information S1 (figure)).

Differences in survivin networks in tumour 
cells? To explain this preponderance of onco-
proteins that are functionally associated with 
survivin, one can speculate that the survivin 
networks might be qualitatively different 
in cancer, namely that they might rely on a 
host of protein partners that are selectively 
or differentially used by tumour cells. 
However, this has yet to be demonstrated 
experimentally. This idea may help reconcile 
some unexpected findings regarding the use 
of survivin antagonists as anticancer agents, 
and their potential risk for toxicity in humans. 
There is a unanimous consensus that survivin 
is essential during development, and might 
also have a crucial homeostatic function in 
certain adult tissues10,18. Despite this, survivin 
antagonists, at least those tested so far, 
were generally well tolerated in clinical and 
preclinical studies, with modest side effects 
potentially unrelated to drug treatment. For 
instance, in the case of two YM155 phase I 
trials, the most common adverse events 
observed included pyrexia, arthralgia, nausea, 
fatigue and mucosal inflammation in one 
patient series (41 patients (31 male and 10 
female), median age 61 years)70, and fatigue, 

Table 1 | Portfolio of survivin antagonists and status of their clinical development

Therapeutic approach Compounds Preclinical trials Clinical development*

Antisense LY2181308 Completed Phase I trial completed 
Phase II trial announced

Molecular antagonists Ribozyme RNA interference Ongoing Not started

Gene therapy Dominant interfering mutants (C84A; T34A) Ongoing Not started

BIRC5 promoter for tumour-specific transcription of 
cytotoxic gene(s)‡

Ongoing Planned

Transcriptional 
repressors

EM-1421 (tetra-O-methyl nordihydroguaiaretic acid) Completed Phase I trial ongoing

YM155 Completed Phase I trials completed 
Phase II trials ongoing

Small molecule 
antagonists of other 
pathways

STAT3 (STA-21; WP1066) Completed Phase I trial planned

CDK1 (flavopiridol) Completed Phase II trial ongoing (NCT00098371)

TCF (SDX-308) Completed Phase II trial ongoing

HSP90 (17-AAG) Completed Phase I and II trials ongoing (NCT00096005, 
NCT00117988, NCT00096109)

ERBB2 (lapatinib or Tykerb) Completed Phase III trials ongoing (NCT00374322)

Immunotherapy Autologous CTL pulsed with survivin-primed 
dendritic cells

Completed Phase I and II trials ongoing

Oral DNA vaccine (survivin peptide) Ongoing Planned

Peptidomimetic Combined survivin and HSP90 antagonist 
(shepherdin)

Ongoing Ongoing

*Numbers in parentheses are identifiers on ClinicalTrials.gov. ‡Because of its tumour-specific transcription, the BIRC5 promoter has been used to drive expression of cytotoxic 
‘payload’ genes selectively in tumour cells81. BIRC5 (survivin), baculoviral inhibitor of apoptosis protein repeat-containing protein 5; CDK1, cyclin-dependent kinase 1; CTL, 
cytotoxic T lymphocyte; HSP90, heat shock protein 90; STAT3, signal transducer and activator of transcription 3; TCF, T-cell factor. Modified, with permission, from ref 82 (2006) 
© American Association for Cancer Research.
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microalbuminaemia, pyrexia and anaemia in 
a second patient series (34 patients (24 male 
and 10 female), median age 60 years)74. The 
results of the LY2181308 phase I trial are not 
published, but the fact that this regimen has 
now been moved to phase II studies suggests 
that potential toxicities were manageable. 
Clearly, given the multiplicity of functions 
of survivin, and a few reports suggesting its 
expression in normal, differentiated tissues, 
it remains possible that survivin-based 
therapies, especially when new classes of 
antagonists become available, might cause as 
yet unseen side effects in humans. However, 
an alternative possibility can be formulated: 
targeting survivin might selectively affect the 
qualitatively different networks organized in 
tumour cells (Supplementary information 
S1 (figure)), but leave survivin functions 
unscathed in normal tissues.

Although this hypothesis awaits confir-
mation from a more in-depth understanding 
of the multiple facets of survivin networks 
in normal and tumour cells, the idea that 
signalling pathways might be preferentially, 
or even exclusively, operational in cancer is 
not without precedent, and is reminiscent 
of the concept of ‘oncogene addiction’, in 
which tumours become dependent on crucial 
oncoprotein(s) for their maintenance75. It 
is not known to what extent this occurs 
in vivo75, but it is clear that certain tumour 
characteristics confer sensitivity to molecu-
larly targeted drugs — for example, EGFR 
antagonists5 — and this typically occurs with 
minimal side effects. In this context, it is 
possible that at least certain tumours might 
become ‘addicted’ to the survivin networks, 
offering not only therapeutic prospects for 
individualized treatment by survivin antago-
nists, but also a valuable therapeutic window 
to limit unwanted side effects. This may 
alleviate concerns that survivin-based thera-
peutics might produce unacceptable toxicity 
owing to global inhibition of cell prolifera-
tion, especially in pivotal cellular compart-
ments, such as T cells and haematopoietic 
progenitors, in which survivin has been 
shown to play an important homeostatic 
role. Despite the fact that these considera-
tions apply to any anti-mitotic agent, many 
of which are currently widely used to treat 
cancer, early clinical testing with the survivin 
suppressant YM155 did not uncover bone-
marrow toxicity or a heightened incidence of 
infections70,74.

Conclusions and perspectives
Ten years of studies have validated a pivotal 
role for survivin in tumour cell survival. 
Although the details of the multiple pathways 

emanating from the survivin networks are 
yet to be fully elucidated, there is a consensus 
that survivin is an essential cancer gene and 
an appropriate target for drug discovery. The 
view presented here is that this is centred on 
the role of survivin as a nodal cancer protein, 
orchestrating extensive, and potentially 
tumour-specific, signalling networks. 

Despite the fact that survivin is not a 
traditional drug target — that is, it is not 
an enzyme or a cell-surface molecule — its 
unique nodal properties imply that even rela-
tively subtle perturbations of its expression, 
stability or binding to associated molecules 
could irreversibly impair tumour cell viability. 
This uniquely flexible approach for drug 
discovery, combined with the possibility for 
fewer side effects, might make survivin antag-
onists attractive global pathway inhibitors, 
ideally suited to overcome the extraordinary 
heterogeneity of human cancer.
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