
377

In general, transcriptionally active euchromatin replicates during
the first half of S phase, whereas silent heterochromatin
replicates during the second half. Moreover, changes in
replication timing accompany key stages of development.
Although there is not a strict correlation between replication
timing and transcription per se, recent results reveal a strong
relationship between heritably repressed chromatin and late
replication that is conserved in all eukaryotes. A long-standing
question is whether replication timing dictates the structure of
chromatin or vice versa. Mounting evidence supports a model in
which replication timing is both cause and consequence of
chromatin structure by providing a means to inherit chromatin
states that, in turn, regulate replication timing in the subsequent
cell cycle. Moreover, new findings relating aberrations in
replication timing to defects in centromere function,
chromosome cohesion and genome instability suggest that the
role of replication timing extends beyond its relationship to
transcription. Novel systems in both yeasts and mammals are
finally beginning to reveal some of the determinants that
regulate replication timing, which should pave the way for a
long-anticipated molecular dissection of this complex liaison.
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Introduction
Experiments conducted in the early 1960s showed that
genetically inactive heterochromatin, contained in Giemsa
dark chromosome bands or ‘G bands’, replicates late during
S phase, whereas most transcription takes place in Giemsa
light or ‘R bands’, which replicate early during S phase
(for references see [1]). Results from modern molecular
approaches have been consistent with this conclusion: out
of the few dozen genes examined, nearly all transcriptionally
active genes replicate early in S phase, and more than half
of the developmentally regulated genes replicate late
when they are not expressed [2–4]. 

Comprehensive studies of large DNA segments are con-
sistent with the idea that several adjacent replication
origins orchestrate the coordinate replication of large
‘replication domains’, whose boundaries coincide with the
boundaries of R and G bands [5–7]. Some studies have

identified developmentally regulated switches for replication
timing that encompass hundreds of kilobases [8,9••,10]. In
all such cases, a switch from late to early replication
precedes or coincides with transcriptional activation of
genes within the affected domain. Hence, it is often
presumed that early replication is a necessary (albeit not
sufficient) condition for transcription. 

Two reciprocal but not mutually exclusive working
models have been proposed to describe this relationship
(Figure 1). In the first model (Figure 1a), transcriptional
potential is established by synthesizing DNA at times
when specific proteins are available for assembly into
chromatin. For example, early replicating DNA would
have a competitive advantage for binding limiting con-
centrations of transcriptional activators [11], whereas
proteins that facilitate the assembly of heterochromatin
would be available only late during S phase [12••]. An
alternative model (Figure 1b) proposes that the structure
of heterochromatin delays the initiation of replication
[13,14,15••], perhaps by restricting access of essential
replication proteins to chromatin. In this review, I summarize
recent evidence in the context of each of these models.

Globin gene regulation
The mammalian globin gene loci are amongst the most well
studied with respect to the role of replication timing in
gene expression. In non-erythroid cells the β-globin
gene cluster is embedded in a 200–300 kb stretch of
hypoacetylated, DNaseI-resistant, late-replicating chromatin;
but in erythroblasts that can be induced to express 
β-globin, roughly 1 Mb surrounding the β-globin gene
comprises early-replicating, DNaseI-sensitive, acetylated
chromatin [9••,16••]. Much attention has focused on the
role of the locus control region (LCR) — a cluster of five
DNaseI-hypersensitive sites that span a region 50–75 kb
upstream of the β-globin genes. Naturally occurring
deletions that include the LCR render the entire globin
locus insensitive to DNaseI, transcriptionally inactive and
late replicating [16••]. 

Transgenic mice carrying human β-globin constructs
containing the LCR show efficient, position-independent
levels of gene expression, although the percentage of cells
expressing the gene is still subject to variegating position
effects [17]. Recently, several LCR-containing transgenes
have been shown to replicate early in erythroid tissues and
late in non-erythroid tissues derived from these transgenic
mice, regardless of the normal replication time of the
integration site [9••]. For one of these transgenes, flanking
sequences seemed to come under the replication-timing
control of the insert. Furthermore, derivative transgenes
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with deletions in the LCR did not show proper replication-
timing control. These experiments suggest that cis-acting
elements within the LCR are sufficient to influence the
replication timing of large chromosomal regions; however,
they do not distinguish whether the LCR exerts a direct
influence over origin firing or affects replication timing
indirectly through global changes in chromatin structure.

Intriguingly, targeted deletions of the LCR at the native
locus, either in knockout mice or in human chromosomes
transferred into murine erythroleukemia cells, do not
affect chromatin structure or replication timing, although
they do substantially reduce transcription of the β-globin
genes [16••,18•]. At present, the simplest way to reconcile
these knockout studies with the transgenic mouse
experiments is to hypothesize the existence of redundant
elements upstream of the LCR that ensure proper replication
timing when the LCR is deleted. These redundant 
elements would presumably be contained within the
larger Hispanic deletion that disrupts replication control.
This hypothesis will soon be put to the test through the
targeted deletion of additional upstream sequences. 

An important consideration is that hemoglobin consists of
equal quantities of both α- and β-globin. Therefore, the
genes encoding these two polypeptides must be regulated
coordinately and expressed to similar levels, yet the α-globin
locus is early replicating and embedded in accessible
chromatin in all tissues [3,19•]. Thus, an erythroid-specific

pattern of gene expression can be achieved without marked
changes in chromatin structure. Cells may be forced to
adapt different strategies depending on the chromosomal
context in which a gene is located. The α-globin gene is in
a GC-rich region containing many housekeeping genes,
whereas the β-globin gene is in an AT-rich region flanked
by olfactory receptor genes and imprinted genes.

Allelic asynchrony
Homologous alleles usually replicate synchronously;
however, monoallelically expressed genes such as imprinted
genes [20], genes encoding olfactory receptors [9••], and
the female X chromosome (reviewed in [21,22]) replicate
asynchronously in mammals, with the expressed allele
replicating earlier than the silent allele. Asynchrony is
established early in development. With imprinted genes,
asynchronous replication is erased in the germ line before
meiosis and reset in late gametogenesis, remaining 
asynchronous throughout pre-implantation development [20].
In contrast, asynchronous replication of the X chromosome is
reversed during gametogenesis and then re-established
during the implantation stage of embryonic development,
coincident with transcriptional inactivation and hetero-
chromatinization of the late-replicating chromosome [21,22]. 

Recently, the immunoglobulin and T-cell receptor genes
have been shown to replicate asynchronously [23••].
Asynchronous replication is erased in the morula and
blastula, and (similar to X-chromosome inactivation) reset
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Figure 1

Two models that relate replication timing and
transcriptional control. (a) In this model,
replication timing is controlled actively to
replicate chromosome domains at times when
critical regulatory factors are available. For
example, limiting amounts of transcriptional
activating factors (A, yellow stars) could be
sequestered by early-replicating DNA [11].
Alternatively, the availability of repressors (R)
(e.g. chromatin modifiers, red circles) might
be restricted to late S phase [12••].
Euchromatin is denoted as light blue
nucleosomes, heterochromatin as dark blue
nucleosomes, active and inactive promoters
as arrows. (b) This model proposes that
chromatin structure, by restricting the access
of replication factors, determines the time at
which origins in that domain will fire [13,14].
Shown is a pre-replication complex (pre-RC)
assembled at a replication origin and either
accessible or inaccessible to proteins that
regulate initiation of replication during S phase
(reviewed in [13,29]). These models are not
mutually exclusive. For example, chromatin
modifications could initiate changes in
replication timing, whereas replication timing
might maintain chromatin structure by
ensuring that epigenetic states of chromatin
are propagated.
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at the time of implantation by a mechanism that chooses
the late-replicating allele at random. Notably, it is almost
always the early-replicating allele that is initially selected
to undergo rearrangement, suggesting that replication
timing is an early developmental marker for allelic
exclusion in the immune system.

Inactivation of the X chromosome is currently the only
available system in which the order of events surrounding
a switch in replication timing can be observed in cell pop-
ulations. Female embryonic stem cells can be stimulated
to differentiate in culture. This results in the coating of
one X chromosome with Xist RNA, a non-coding transcript
only expressed from the inactive X. Subsequently — perhaps
within a single cell cycle — the Xist-coated X chromosome
is rendered transcriptionally silent and late replicating [24],
coincident with hypoacetylation and K9 methylation of
histone H3 [25•]. If Xist RNA is induced experimentally
before the signal for differentiation, however, transcriptional
silencing occurs but is reversible upon downregulation of Xist
RNA [26••]. In this system, irreversible (Xist-independent)
inactivation follows differentiation and is coincident with
late replication. All of these events take place before the
methylation of CpG islands on the inactive X chromosome
[24], which, owing to its late onset, cannot be involved in
initiating late replication. DNA methylation does seem to
contribute to maintaining late replication, as mutations in
the dnmt3b DNA methyltransferase gene [27••], or treatment
of somatic cells with the de-methylating agent 5-aza-
cytidine [28], result in early replication of the inactive
X chromosome in a percentage of cells. 

Together, these data imply that expression of Xist RNA
and transcriptional silencing mark the inactive X chromo-
some for a switch in replication timing, whereas a complex
interplay between several epigenetic factors maintains late
replication. They do not yet distinguish, however, whether
the initial assembly of a heritable heterochromatic state is
a cause or consequence of changes in replication control.

Determinants of replication timing
Ultimately, understanding the role of replication timing in
transcriptional control (or any other cellular process) will
require knowledge of what programs replication origins to
fire at particular times during S phase. This has been a
particularly challenging problem in metazoa, because of
difficulties in defining the sequence elements that
comprise replication origins and the lack of convenient
assays for replication [29]. 

There are only two mammalian loci for which both
replication-timing switches and origin localization have
been studied. At the mouse immunoglobulin IgH locus,
new origins are activated in pre-B cells when the promoter
region of this locus becomes transcriptionally active and
switches from late to early replicating ([10]; C Shildkraut,
personal communication). In contrast, at the human
β-globin locus, replication initiates at the same site whether

the locus is early or late replicating [16••], showing that the
elements that control timing are separate from those that
specify origin sites at this locus. 

Neither of these labor-intensive studies [10,16••] has
determined, however, whether the primary switch is at the
level of replication or the level of transcription. Globally,
domains of histone H4 deacetylation [30] and histone
H3 Lys9 methylation [31•] coincide with domains of
late-replicating chromatin, and inhibitors of histone
deacetylases can disrupt replication timing [32]. Although
this suggests that the structure of heterochromatin is
required to maintain patterns of late replication, it does not
identify the event that establishes these patterns.

Budding yeast provide a much simpler model system in
which to address the determinants of replication timing.
Well-defined, genetically tractable replication origins
initiate at defined times during S phase. When removed
from their native chromosomal context, most of these
origins will replicate early unless they are positioned either
near a telomere or next to specific segments of DNA
derived from late-replicating regions (reviewed in [13]).
For a zone extending about 10 kb from the telomere,
mutations in the gene encoding the silent chromatin
factor Sir3p, which is enriched at telomeres, results in
both firing of a silent replication origin [14] and increased
gene expression [33]. 

Such experiments provide direct evidence that the
structure of transcriptionally silent chromatin can delay
initiation at some origins, presumably by restricting access
of replication initiation factors to chromatin (Figure 1b).
But other origins seem to have a strong propensity to
remain late replicating. For example, origins at the silent
mating-type locus (HML) still replicate somewhat later
than other origins when removed from their chromosomal
context, and this intrinsic late-initiating program appears
to be controlled by cis-acting elements that are, as yet,
inseparable from the elements required for initiation [34•,35].

At many budding yeast loci, transcriptional activity is not
incompatible with late replication. A stretch of late-
replicating DNA on chromosome XIV contains several
actively transcribed genes [36], and mutations that relieve
transcriptional silencing at the HML locus do not advance
the replication timing of origins within this locus [35,37]..
Moreover, a pioneering whole-genome analysis of replication
timing has concluded that there is no correlation between
levels of gene expression and replication timing for
137 ribosomal protein genes (accounting for about 50% of
RNA polymerase II expression), small nucleolar RNA and
tRNA genes [38••]. 

At first glance, this result may appear to reveal a funda-
mental difference between yeast and higher eukaryotes.
However, the number of mammalian genes analysed for
replication timing is a small fraction of the genome, and
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even within this small sampling there exist examples of
late-replicating expressed genes [3,39,40]. These results
can be more inclusively interpreted by proposing that it
is only the heritably repressed (heterochromatic) chromo-
some domains that correlate strictly with late replication,
which is true in all eukaryotic systems studied to date.
Telomeres and silent mating-type loci may be the only
genuine heterochromatic loci in budding yeast. Studies
of replication timing in fission yeast, which has become
an excellent model system for studying heterochromatin
[41•], have only just begun [42•] and should be instru-
mental in probing the liaison between late replication
and heterochromatin. 

Replication timing and subnuclear position
Several recent studies suggest that replication timing is
re-established in each cell cycle by modifications of
chromatin that take place as sequences are re-positioned
after mitosis (reviewed in [13,43]). In mammalian cells, the
events that establish a replication program can be teased apart
by incubating nuclei from synchronized cells in extracts from
replication-competent Xenopus eggs [44,45••]. These studies
have defined a discrete window of time in early G1 phase
during which the replication-timing program is established
— the ‘timing decision point’ (TDP). Before this point,
chromosomal domains are replicated in a random order.

The TDP takes place before the specification of replication
origin sites and certain manipulations of nuclei can disrupt
origin specification without disturbing the order in which
chromosome domains are replicated [44]. This implies that
replication timing is established at the level of chromosome
domains and is independent of which sites are selected to
function as replication origins. Intriguingly, the TDP takes
place simultaneously with the repositioning of sequences in
the nucleus after mitosis [44,45••,46]. In fact, the Chinese
hamster β-globin locus acquires the replication-timing
program of peripheral heterochromatin coincidently with its
association with the nuclear periphery at the TDP [45••].

These experiments suggest a model in which chromatin
regulators disperse during mitosis and are then re-concen-
trated into subnuclear compartments by a clustering of
related chromosomal domains [13,44,45••]. Chromatin
coming into contact with these compartments would be
modified in trans by the locally high concentrations of
these regulators, setting thresholds for replication timing,
as suggested in Figure 1b. The determining event is
probably not histone modifications, as patterns of histone
acetylation and methylation are largely maintained during
mitosis [30,31•], but it could be the association of other
chromatin regulators such as chromodomain proteins [13].

The precedent for this model derives from several elegant
studies in budding yeast. The 32 telomeres in a diploid
yeast cell are clustered into three to eight sites at the
nuclear periphery. Sir proteins, which are required for late
replication and transcriptional silencing near telomeres

[14,33], are present at low levels throughout the overall
nucleus but are concentrated at telomere clusters.
Mutations that disrupt telomere clustering also relieve
silencing of telomeric genes [47]. Recently, it was shown
that several non-telomeric late replicating origins are
closer to the nuclear periphery during G1 phase but are
found farther from the periphery at later points in the cell
cycle, whereas early replicating origins are found throughout
the nucleus at all times during the cell cycle [15••].

In fact, the late replication program of one budding yeast
origin is established during early G1 phase, and cis-acting
elements that are separable from this origin are necessary
for both peripheral localization and late replication during
this same window of time [15••,48]. Together, these results
suggest that replication origins are modified at the
nuclear periphery during G1 phase to delay their initiation
time — a conclusion that provides optimism that the power
of yeast genetics may allow the molecular basis of the TDP
to be dissected. 

The periphery is not the only heterochromatic nuclear
compartment, but the extent to which other compartments
can delay replication timing in trans is not yet clear. For
example, genes that associate in trans with intranuclear
pericentromeric heterochromatin are often (but not
always) silenced [49,50,51•]. This association seems to be
established by specific transcriptional repressors [52,53]
and disrupted by specific transcriptional activators [51•].
Out of the few genes that associate with these pericen-
tromeric subnuclear compartments that have been
examined, however, none is heterochromatic [53] or late
replicating ([51•]; A Fisher, personal communication).

In contrast, a strong correlation has been found between
late replication, transcriptional inactivity and proximity to
the nuclear periphery ([7,45••,54•]; C Shildkraut, personal
communication). Importantly, in both yeast [15••] and
mammalian cells [46,55],, sequences can move away from
the periphery after the TDP and retain their late replication
program. Thus, studies relating subnuclear position to
replication timing may be ambiguous unless carried out
with cells synchronized at the TDP.

Other roles for replication timing
The incomplete correlation between replication timing
and transcription may reflect other roles for replication
timing. In several model systems, defects in replication
timing are associated with defects in chromosome conden-
sation, sister chromatid cohesion and genome stability
[56••,57•]. Moreover, abnormal allelic asynchrony has
become a useful clinical marker for predicting malignant
cancers [58•,59•,60••], and defects in replication timing
have been associated with chromosome instability in sev-
eral inherited human diseases (for example, [27••,61,62]). 

In both yeast and mammals, late replication correlates more
faithfully with heterochromatin than with transcriptional
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silencing, and heterochromatin has been shown recently to
be required for sister chromatid cohesion and segregation
[41•]. In addition, the histone deacetylase HDAC2 localizes
to sites of late-, but not early-, replicating DNA [12••],
suggesting a means by which late replication might
maintain the hypoacetylated structure of heterochromatin
(Figure 1a). If the primary role of replication timing is to
maintain the structure of heterochromatin, which is neither
necessary (e.g. for the α-globin gene) nor sufficient (e.g. for
genes in heterochromatin [63]) to repress transcription,
then the incomplete correlation between replication timing
and transcriptional control would not be surprising.

Conclusions
In all eukaryotes, replication timing is linked indirectly to
transcriptional control through its liaison with chromatin
structure. Heterochromatin seems to be universally late
replicating. The mechanism that links these two has
remained elusive, and evidence exists for both of the mod-
els shown in Figure 1. Although some systems provide
direct evidence that silent chromatin is responsible for late
replication, this model (Figure 1b) does not offer a func-
tional significance to replication timing. The simplest
interpretation is that both models are correct. Although
switches in replication timing can be initiated by changes
in chromatin structure, once established that structure
must be re-assembled in each cell cycle. Duplicating
chromatin at specific times during the cell cycle might
facilitate the re-assembly of the very domain structure
that dictates, in turn, replication timing in the subsequent
cell cycle. 

Testing this hypothesis will require a better understanding
of what regulates replication timing. This will be a formidable
challenge, particularly when one considers that origins
do not fire simply early or late, but continuously throughout
S phase [38••,44]. New approaches, in both yeast and
mammalian cells, are beginning to dissect how this program
is reset in each cell cycle; and recent links to genome
stability and human disease should provide added incentive
for more research. Sorely needed, however, are systems for
probing the molecular events that initiate replication-timing
switches, such as those available for studying X-chromosome
inactivation. Central to this goal is a description of when
such switches occur during development.

So far, the number of loci for which replication timing
changes have been identified is a tiny representation of the
genome. Moreover, tissue-specific differences in Giemsa R
and G banding patterns have not been observed, raising
the question of how frequently changes in timing of
replication occur during development. Whole-genome
analyses of replication timing, such as those carried out
recently in budding yeast, need to be performed in different
cell lineages before we can evaluate the significance of
replication timing switches during the course of develop-
ment. At least this approach is one that is within our
technological grasp.
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