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Introduction 

   To assess whether a given alignment constitutes evidence for homology, it helps to know 

how strong an alignment can be expected from chance alone. In this context, "chance" can 

mean the comparison of (i) real but non-homologous sequences; (ii) real sequences that are 

shuffled to preserve compositional properties [1-3]; or (iii) sequences that are generated 

randomly based upon a DNA or protein sequence model. Analytic statistical results 

invariably use the last of these definitions of chance, while empirical results based on 

simulation and curve-fitting may use any of the definitions. 

The statistics of global sequence comparison 

   Unfortunately, under even the simplest random models and scoring systems, very little is 

known about the random distribution of optimal global alignment scores [4]. Monte Carlo 

experiments can provide rough distributional results for some specific scoring systems and 

sequence compositions [5], but these can not be generalized easily. Therefore, one of the 

few methods available for assessing the statistical significance of a particular global 

alignment is to generate many random sequence pairs of the appropriate length and 

composition, and calculate the optimal alignment score for each [1,3]. While it is then 

possible to express the score of interest in terms of standard deviations from the mean, it is 

a mistake to assume that the relevant distribution is normal and convert this Z-value into a 

P-value; the tail behavior of global alignment scores is unknown. The most one can say 

reliably is that if 100 random alignments have score inferior to the alignment of interest, the 

P-value in question is likely less than 0.01. One further pitfall to avoid is exaggerating the 

significance of a result found among multiple tests. When many alignments have been 

generated, e.g. in a database search, the significance of the best must be discounted 

accordingly. An alignment with P-value 0.0001 in the context of a single trial may be 

assigned a P-value of only 0.1 if it was selected as the best among 1000 independent trials. 

The statistics of local sequence comparison 

   Fortunately statistics for the scores of local alignments, unlike those of global alignments, 

are well understood. This is particularly true for local alignments lacking gaps, which we 

will consider first. Such alignments were precisely those sought by the original BLAST 

database search programs [6]. 

  A local alignment without gaps consists simply of a pair of equal length segments, one 

from each of the two sequences being compared. A modification of the Smith-Waterman 

[7] or Sellers [8] algorithms will find all segment pairs whose scores can not be improved 

by extension or trimming. These are called high-scoring segment pairs or HSPs. 

   To analyze how high a score is likely to arise by chance, a model of random sequences is 

needed. For proteins, the simplest model chooses the amino acid residues in a sequence 

independently, with specific background probabilities for the various residues. 

Additionally, the expected score for aligning a random pair of amino acid is required to be 

negative. Were this not the case, long alignments would tend to have high score 



independently of whether the segments aligned were related, and the statistical theory 

would break down. 

   Just as the sum of a large number of independent identically distributed (i.i.d) random 

variables tends to a normal distribution, the maximum of a large number of i.i.d. random 

variables tends to an extreme value distribution [9]. (We will elide the many technical 

points required to make this statement rigorous.) In studying optimal local sequence 

alignments, we are essentially dealing with the latter case [10,11]. In the limit of 

sufficiently large sequence lengths m and n, the statistics of HSP scores are characterized 

by two parameters, K and lambda. Most simply, the expected number of HSPs with score at 

least S is given by the formula 

 
 

We call this the E-value for the score S. 

 

   This formula makes eminently intuitive sense. Doubling the length of either sequence 

should double the number of HSPs attaining a given score. Also, for an HSP to attain the 

score 2x it must attain the score x twice in a row, so one expects E to decrease 

exponentially with score. The parameters K and lambda can be thought of simply as natural 

scales for the search space size and the scoring system respectively. 

Bit scores 

   Raw scores have little meaning without detailed knowledge of the scoring system used, or 

more simply its statistical parameters K and lambda. Unless the scoring system is 

understood, citing a raw score alone is like citing a distance without specifying feet, meters, 

or light years. By normalizing a raw score using the formula 

 
one attains a "bit score" S', which has a standard set of units. The E-value corresponding to 

a given bit score is simply 

 
Bit scores subsume the statistical essence of the scoring system employed, so that to 

calculate significance one needs to know in addition only the size of the search space. 

P-values 

   The number of random HSPs with score >= S is described by a Poisson distribution 

[10,11]. This means that the probability of finding exactly a HSPs with score >=S is given 

by 



 
where E is the E-value of S given by equation (1) above. Specifically the chance of finding 

zero HSPs with score >=S is e
-E

, so the probability of finding at least one such HSP is 

 
This is the P-value associated with the score S. For example, if one expects to find three 

HSPs with score >= S, the probability of finding at least one is 0.95. The BLAST programs 

report E-value rather than P-values because it is easier to understand the difference 

between, for example, E-value of 5 and 10 than P-values of 0.993 and 0.99995. However, 

when E < 0.01, P-values and E-value are nearly identical. 

Database searches 

   The E-value of equation (1) applies to the comparison of two proteins of lengths m and n. 

How does one assess the significance of an alignment that arises from the comparison of a 

protein of length m to a database containing many different proteins, of varying lengths? 

One view is that all proteins in the database are a priori equally likely to be related to the 

query. This implies that a low E-value for an alignment involving a short database sequence 

should carry the same weight as a low E-value for an alignment involving a long database 

sequence. To calculate a "database search" E-value, one simply multiplies the pairwise-

comparison E-value by the number of sequences in the database. Recent versions of the 

FASTA protein comparison programs [12] take this approach [13]. 

   An alternative view is that a query is a priori more likely to be related to a long than to a 

short sequence, because long sequences are often composed of multiple distinct domains. If 

we assume the a priori chance of relatedness is proportional to sequence length, then the 

pairwise E-value involving a database sequence of length n should be multiplied by N/n, 

where N is the total length of the database in residues. Examining equation (1), this can be 

accomplished simply by treating the database as a single long sequence of length N. The 

BLAST programs [6,14,15] take this approach to calculating database E-value. Notice that 

for DNA sequence comparisons, the length of database records is largely arbitrary, and 

therefore this is the only really tenable method for estimating statistical significance. 

The statistics of gapped alignments 

   The statistics developed above have a solid theoretical foundation only for local 

alignments that are not permitted to have gaps. However, many computational experiments 

[14-21] and some analytic results [22] strongly suggest that the same theory applies as well 

to gapped alignments. For ungapped alignments, the statistical parameters can be 

calculated, using analytic formulas, from the substitution scores and the background residue 

frequencies of the sequences being compared. For gapped alignments, these parameters 

must be estimated from a large-scale comparison of "random" sequences. 

   Some database search programs, such as FASTA [12] or various implementation of the 

Smith-Waterman algorithm [7], produce optimal local alignment scores for the comparison 



of the query sequence to every sequence in the database. Most of these scores involve 

unrelated sequences, and therefore can be used to estimate lambda and K [17,21]. This 

approach avoids the artificiality of a random sequence model by employing real sequences, 

with their attendant internal structure and correlations, but it must face the problem of 

excluding from the estimation scores from pairs of related sequences. The BLAST 

programs achieve much of their speed by avoiding the calculation of optimal alignment 

scores for all but a handful of unrelated sequences. The must therefore rely upon a pre-

estimation of the parameters lambda and K, for a selected set of substitution matrices and 

gap costs. This estimation could be done using real sequences, but has instead relied upon a 

random sequence model [14], which appears to yield fairly accurate results [21]. 

Edge effects 

   The statistics described above tend to be somewhat conservative for short sequences. The 

theory supporting these statistics is an asymptotic one, which assumes an optimal local 

alignment can begin with any aligned pair of residues. However, a high-scoring alignment 

must have some length, and therefore can not begin near to the end of either of two 

sequences being compared. This "edge effect" may be corrected for by calculating an 

"effective length" for sequences [14]; the BLAST programs implement such a correction. 

For sequences longer than about 200 residues the edge effect correction is usually 

negligible. 

The choice of substitution scores 

   The results a local alignment program produces depend strongly upon the scores it uses. 

No single scoring scheme is best for all purposes, and an understanding of the basic theory 

of local alignment scores can improve the sensitivity of one's sequence analyses. As before, 

the theory is fully developed only for scores used to find ungapped local alignments, so we 

start with that case. 

   A large number of different amino acid substitution scores, based upon a variety of 

rationales, have been described [23-36]. However the scores of any substitution matrix with 

negative expected score can be written uniquely in the form 

 
 

where the qij, called target frequencies, are positive numbers that sum to 1, the pi are 

background frequencies for the various residues, and lambda is a positive constant [10,31]. 

The lambda here is identical to the lambda of equation (1). 

   Multiplying all the scores in a substitution matrix by a positive constant does not change 

their essence: an alignment that was optimal using the original scores remains optimal. 

Such multiplication alters the parameter lambda but not the target frequencies qij. Thus, up 



to a constant scaling factor, every substitution matrix is uniquely determined by its target 

frequencies. These frequencies have a special significance [10,31]: 

A given class of alignments is best distinguished from 

chance by the substitution matrix whose target frequencies 

characterize the class.  

 

To elaborate, one may characterize a set of alignments representing homologous protein 

regions by the frequency with which each possible pair of residues is aligned. If valine in 

the first sequence and leucine in the second appear in 1% of all alignment positions, the 

target frequency for (valine, leucine) is 0.01. The most direct way to construct appropriate 

substitution matrices for local sequence comparison is to estimate target and background 

frequencies, and calculate the corresponding log-odds scores of formula (6). These 

frequencies in general can not be derived from first principles, and their estimation requires 

empirical input. 

The PAM and BLOSUM amino acid substitution matrices 

   While all substitution matrices are implicitly of log-odds form, the first explicit 

construction using formula (6) was by Dayhoff and coworkers [24,25]. From a study of 

observed residue replacements in closely related proteins, they constructed the PAM (for 

"point accepted mutation") model of molecular evolution. One "PAM" corresponds to an 

average change in 1% of all amino acid positions. After 100 PAMs of evolution, not every 

residue will have changed: some will have mutated several times, perhaps returning to their 

original state, and others not at all. Thus it is possible to recognize as homologous proteins 

separated by much more than 100 PAMs. Note that there is no general correspondence 

between PAM distance and evolutionary time, as different protein families evolve at 

different rates. 

   Using the PAM model, the target frequencies and the corresponding substitution matrix 

may be calculated for any given evolutionary distance. When two sequences are compared, 

it is not generally known a priori what evolutionary distance will best characterize any 

similarity they may share. Closely related sequences, however, are relatively easy to find 

even will non-optimal matrices, so the tendency has been to use matrices tailored for fairly 

distant similarities. For many years, the most widely used matrix was PAM-250, because it 

was the only one originally published by Dayhoff. 

   Dayhoff's formalism for calculating target frequencies has been criticized [27], and there 

have been several efforts to update her numbers using the vast quantities of derived protein 

sequence data generated since her work [33,35]. These newer PAM matrices do not differ 

greatly from the original ones [37]. 

   An alternative approach to estimating target frequencies, and the corresponding log-odds 

matrices, has been advanced by Henikoff & Henikoff [34]. They examine multiple 

alignments of distantly related protein regions directly, rather than extrapolate from closely 

related sequences. An advantage of this approach is that it cleaves closer to observation; a 

disadvantage is that it yields no evolutionary model. A number of tests [13,37] suggest that 

the "BLOSUM" matrices produced by this method generally are superior to the PAM 

matrices for detecting biological relationships. 



DNA substitution matrices 

   While we have discussed substitution matrices only in the context of protein sequence 

comparison, all the main issues carry over to DNA sequence comparison. One warning is 

that when the sequences of interest code for protein, it is almost always better to compare 

the protein translations than to compare the DNA sequences directly. The reason is that 

after only a small amount of evolutionary change, the DNA sequences, when compared 

using simple nucleotide substitution scores, contain less information with which to deduce 

homology than do the encoded protein sequences [32]. 

   Sometimes, however, one may wish to compare non-coding DNA sequences, at which 

point the same log-odds approach as before applies. An evolutionary model in which all 

nucleotides are equally common and all substitution mutations are equally likely yields 

different scores only for matches and mismatches [32]. A more complex model, in which 

transitions are more likely than transversions, yields different "mismatch" scores for 

transitions and transversions [32]. The best scores to use will depend upon whether one is 

seeking relatively diverged or closely related sequences [32]. 

Gap scores 

   Our theoretical development concerning the optimality of matrices constructed using 

equation (6) unfortunately is invalid as soon as gaps and associated gap scores are 

introduced, and no more general theory is available to take its place. However, if the gap 

scores employed are sufficiently large, one can expect that the optimal substitution scores 

for a given application will not change substantially. In practice, the same substitution 

scores have been applied fruitfully to local alignments both with and without gaps. 

Appropriate gap scores have been selected over the years by trial and error [13], and most 

alignment programs will have a default set of gap scores to go with a default set of 

substitution scores. If the user wishes to employ a different set of substitution scores, there 

is no guarantee that the same gap scores will remain appropriate. No clear theoretical 

guidance can be given, but "affine gap scores" [38-41], with a large penalty for opening a 

gap and a much smaller one for extending it, have generally proved among the most 

effective. 

Low complexity sequence regions 

   There is one frequent case where the random models and therefore the statistics discussed 

here break down. As many as one fourth of all residues in protein sequences occur within 

regions with highly biased amino acid composition. Alignments of two regions with 

similarly biased composition may achieve very high scores that owe virtually nothing to 

residue order but are due instead to segment composition. Alignments of such "low 

complexity" regions have little meaning in any case: since these regions most likely arise 

by gene slippage, the one-to-one residue correspondence imposed by alignment is not valid. 

While it is worth noting that two proteins contain similar low complexity regions, they are 

best excluded when constructing alignments [42-44]. The BLAST programs employ the 

SEG algorithm [43] to filter low complexity regions from proteins before executing a 

database search. 
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