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In the process of making full-length cDNA, predicting protein coding regions helps both
in the preliminary analysis of genes and in any succeeding process. However, unfinished
cDNA contains artifacts including many sequencing errors, which hinder the correct
evaluation of coding sequences. Especially, predictions of short sequences are difficult
because they provide little information for evaluating coding potential. In this paper,
we describe ANGLE, a new program for predicting coding sequences in low quality
cDNA. To achieve error-tolerant prediction, ANGLE use a machine-learning approach,
which makes better expression of coding sequence maximizing the use of limited infor-
mation from input sequences. Our method utilizes not only codon usage, but also protein
structure information that is difficult to use for stochastic model-based algorithms, and
optimizes limited information from a short segment when deciding coding potential, with
the result that predictive accuracy does not depend on the length of an input sequence.
The performance of ANGLE is compared with ESTSCAN on four dataset each of them
has a different error rate (one frame-shift error or one substitution error per 200-500
nucleotides) and on one dataset which has no error. ANGLE outperforms ESTSCAN by
9.26% in average Matthews’s correlation coefficient on short sequence dataset (<1000
bases). On long sequence dataset, ANGLE achieves comparable performance.
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1. Introduction

The study of cDNAs remains an essential approach for structural and functional
genome annotations. Especially, full-length cDNA-sequencing is a powerful tool for
accurate annotations, and many large-scale projects have been successful’»?:3.

Several time-consuming steps are required to determine full-length cDNAs*. Be-
fore the finishing step, predicting protein coding regions in uncorrected sequences
helps in both the preliminary analysis of genes and any succeeding process. However,
these sequences are such low quality that some sequences are truncated, and many
sequences have considerable sequencing errors including deletion/insertion errors
that lead to frame-shift errors, and substitution errors that can introduce unex-
pected stop codons in protein coding regions . We can expect about one frame-shift
error or one substitution error in every 200-500 nucleotides. To make prediction
accurate, such errors must be corrected; doing so also helps in designing primers.
Moreover, to check whether a sequence is truncated is important.

Thus, an error-tolerant method is indispensable for predicting the coding se-
quence in unfinished cDNA.

1.1. Related works

Many studies related to the gene-finding problem have been conducted®. Here, we
categorize those especially related to our study into three areas.

(1) Detecting frame-shift errors.
Pro-Frame® is a similarity-based program. FSED’, Xu et al’s work® and
FrameD? are based on statistical models of codon frequency. These studies focus
on detecting frame-shift errors rather than predicting protein-coding regions.
(2) Predicting coding regions from DNA.
There are mainly two approaches for gene finding. One is based on noncom-
parative methods such as Markov chain models which is powerful models for
defining coding regions of a new DNA sequences. GeneMark'® and Glimmer'!
are programs for predicting genes in prokaryotic DNA, while GENSCAN'? and
GlimmerM!3 are those for eukaryotic DNA.

The other approach is identifying coding frames by comparative analy-
sis of homologous transcripts. CRITICA is a hybrid algorithm of noncom-
parative methods and comparative methods. CSTminer '® is based on cross-
species genome comparisons, which can also identifying noncoding conderved
sequences.

These programs do not detect sequencing errors, because their target is
high-quality DNA.

(3) Predicting coding regions from cDNA, EST.
ESTSCAN!6:17 is a Hidden Markov Models (HMM) based program for Ex-
pressed Sequence Tags (ESTs)!®, or cDNAs, that can detect sequencing errors.
DECODER!? is a program based on a simple method of scoring codon usage
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that can account for the quality of input sequences to detect sequencing errors.

Among related works, DECODER was mainly used to analyze mouse cDNA se-
quences in RIKEN Mouse Genome Encyclopedia Project!, while GeneMark has
been used for human ¢cDNA sequences in the Kazusa cDNA sequencing project
which gave rise to HUGE database?.

1.2. Modeling of coding sequences

Our goal is to correct sequencing errors and to predict coding regions simultane-
ously. If additional information, such as sequencing quality of each base is available,
positions where sequencing errors occurs may be predictable without using the gen-
eral feature of protein coding sequence (CDS). DECODER used such additional
information to help prediction. However, sequencing quality is not always avail-
able for every researcher. Therefore, prediction from only sequences data is more
convenient to users.

The natural strategy to predict CDS using only sequences data is extending
a modeling of CDS to treat sequencing errors. For example, ESTSCAN just adds
insertion and deletion states to hidden Markov model of dicodon, while DECODER
evaluates all Open Reading Frames via codon usage, after it artificially insert/delete
bases into/from target sequences. Namely, prediction of sequencing errors positions
depends on a basic modeling of CDS without sequencing errors. Thus better ex-
pression of CDS is essential for predicting both the coding regions and sequencing
errors positions. Especially on short sequences, correct evaluation of coding poten-
tial is difficult because they provide little information. To overcome the shortage,
the modeling method must maximize the use of limited information.

Various approaches have been taken to modeling coding sequences®. Particu-
larly, Markov chain models have been used frequently2C. In the ideal case of having
a training sequence of unlimited length, a higher-order Markov model is a better
predictor 2°, because the model has more information with which to indicate bi-
ological knowledge. For example, an 8th-order model can express the correlation
among three adjacent amino acids, while a 5th-order model can only express the
correlation between two adjacent amino acids.

However, many tools cannot use higher-order models, even though they are
powerful, because higher-order models require a much larger amount of training
data to estimate reliable parameters in real cases?®. If the order is m and the length
of a training sequence is N, only N —m strings of size m+ 1 are available to estimate
the parameters related to no less than 4™ types of oligonucleotides. Therefore, an
attempt to derive a model of too high an order will result in overfitting. For this
reason, instead of a higher-order model, many gene-finding tools rely on a fixed
3-periodic-5th-order Markov model that forms dicodon compositions. Of the tools
mentioned above in section 1.1, GENSCAN, GENEMARK, and ESTSCAN use this
model.

To cope with sparse data, a variable-order Markov model is discussed in a report,
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about the interpolated Markov model (IMM)'!. Glimmer is an implementation of
IMM that combines several Markov models from order zero to given order k to
decide transition probabilities according to the available training-sequence informa-
tion. Also, an interpolated context model (ICM) is introduced in GlimmerM '3 that
is a more sophisticated model of IMM. Still, IMM and ICM cannot model inter-
related information simultaneously (e.g., motifs and codon usage are interrelated
information), because they are based on a stochastic model.

Programs that are not based on a Markov model usually use statistical mod-
els of codon usage or dicodon usage, as do other programs based on a Markov
model. However, many other kinds of biological knowledge are available, such as
information about a composition of three or four adjacent amino acids that shows
interaction between separate amino acids in a protein secondary structure. Such
compositions occur because protein coding sequences will be translated into amino
acid sequences that form protein secondary structures in cells. We think this kind
of information can help making a more efficient model of coding sequences.

In this paper, we propose a hybrid approach of machine learning and Markov
model which optimizes the information of input sequences utilizing not only codon
usage but also protein structure information. We used statistical bias of diamino
acid k-composition (composition of a pair amino acids A, B. A is located k residues
away from B. If k¥ = 1, that means the composition of adjacent amino acids) as
a measure of protein structure. To calculate optimal coding potential, we used
boosting algorithm 2! that can produce an accurate prediction rule by combining
rough and moderately inaccurate rules.

In the following section, we describe the proposed method and draw conclu-
sions after evaluating the performance of ANGLE when it was used to analyze four
human mRNA dataset each of them has a different error rate (one frame-shift er-
ror or one substitution error against 200-500 nucleotides) and one human mRNA
dataset which has no error. The performance of ANGLE is 9.26% better than that of
ESTSCAN in average Matthews’s correlation coefficient on short sequence dataset
(<1000 nucleotides). On long sequence dataset, ANGLE achieves comparable per-
formance.

2. Methods
2.1. Overview of ANGLE

ANGLE has three steps. In the first step, ANGLE calculates coding potential of
all codons using the information of a short region around the target codon. (All
codons means all codon of every frame of an input sequence.) Short regions are
brought using sliding-window. All codons are labeled CDS or ELSE according to its
coding potential. In the next step, the most probable path is traced using a Markov
chain model with dynamic programming. And then, positions where a frame is
changed are detected as rough positions of frame-shift errors in the path. In the
final step, each rough position is modified by selecting the most probable position
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Step 1 Step 2

Aninput sequence— BIGCATCCATG TCGATGCAATGATCGA ...
ATGCATGCATGTCGATGCAATGATCGA ... ATGCATGCATCIGEATCEARNGA TCGA ...
[ATGCAT] ' » H
! 1% frame i ATGCATGCATGTCGATGCAATGATCEANY
:_:::(:__A:-I-_E;:ci_pi_:__.:.:.::::::::::::::::: ‘
| [TGCATG i Step 3
! . 2 frame -
! ATGCA ' ATGEATECA TG TCGATGCAATGATCGA....
o R ATGCATGCATGIEGATIGEARTGA TCGA ..
i TGCATG| == 3 frame ! ATGCATGCATG TCGATGCAATGA ICGAM
e e e e T T T T T e ————————

Candidate areas.

Fig. 1. Overview of ANGLE. Step 1 : An input sequence is divided into short segments via sliding-
window, and each window is labeled CDS or ELSE. Step 2 : The optimal path is calculated using
the Markov Model. Step 3 : Find a frame-shift error from each candidate area.

from candidate positions located near the rough positions. Fig.1 shows an image of
the process.

2.2. Utilizing protein structure information

Since a protein forms a structure, those effects can be observed in amino acid se-
quence as statistic bias. Especially, we paid attention to the interaction between
one amino acid and other amino acids located several residues away, because such
interactions occur on structures. For example, on an alpha helix structure, hydrogen
bonds occur between positions ¢ and 7+4 that make a compositional bias of diamino
acid 4-composition. The same things can be seen on loop structure, beta sheet struc-
ture, or coils. Each structure has its own frequent feature of amino-acid sequence,
and some previous works have discussed predicting secondary structures??23. How-
ever, our goal is not predicting structures but coding regions. Therefore, all diamino
acid k-compositions are used for scores, so as to obtain comprehensive features of
secondary structures.

Fig. 2 show the strong bias of diamino acid k-composition in CDS against that
in random sequences. Following Score Ej is used in the graph for comparison. If
there is no correlation between amino acid A and B in the pair, each amino acids
appears independently and the joint probability P(A, B) should be P(A) - P(B). If
not, Ey should be a large value.

Dy(A,B) = ‘

Ey, = Z Z (De((4i, By))?

(B is an amino acid k residues away from A.)
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In the graph, k=1,. .. ,4 shows high scores comparing to the others. A pair acids
with larger number of k is less informative because effect of k=1,...,n—1 are mixed
when k=n. Table 1 shows top 20 pairs of score Dy.

Detail use of diamino acid k-composition is shown in section 2.5.

~

Score Ek.

O R, N W~ o o

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k (T he distance between two acids of a diamino acid).

Fig. 2. Comparing diamino acid k-compositions of CDS with those of random sequences. The cross
line on the graph shows an average value of all. Scores are calculated on human mRNA entries
from RefSeq. Detail information is shown in Table 2.

Table 1. Top 20 pairs of score Dj,.

topx k pairs score | topx k pairs score
1 3  Cys-Cys 1.69 11 3  Trp-Trp 0.47
2 4  His-His 0.85 12 2 Trp-Trp 0.45
3 4 Cys-Cys 0.71 13 2 Lys-Lys 0.45
4 2  Cys-Cys 0.71 14 4 Cys-Phe 0.44
5 3  Pro-Pro 0.69 15 1  Lys-Lys 0.43
6 2 Pro-Pro 0.68 16 2 Gln-Gln 0.43
7 4  Pro-Pro  0.62 17 1 Ala-Ala 0.42
8 3 Gly-Gly 0.6 18 1 Trp-Trp  0.42
9 1 Glu-Glu  0.58 19 3  Lys-Lys 0.42
10 1 Pro-Pro 0.52 20 2 Tyr-Cys 0.41

Scores are calculated on human mRNA entries from RefSeq.
Detail information is shown in Table 2.

2.3. AdaBoost

We used AdaBoost?* to classify each short segment of an input sequence as either
CDS or ELSE. AdaBoost is a meta-learning algorithm that repeatedly runs a simple
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learning algorithm called the weak learner on the same training data and then
combines its hypotheses into one final hypothesis to achieve higher accuracy than a
single weak learner hypothesis would have. The main idea of AdaBoost is to assign
each example of the given training set a weight. At the beginning all weights are
equal, but in each round the weak learner returns a hypothesis, and the weights
of all examples classified wrongly by that hypothesis are increased. In that way,
the weak learner is forced to focus on the difficult examples of the training set.
The final hypothesis is a combination of the hypotheses of all rounds, namely a
weighted majority vote in which hypotheses with lower classification errors have
higher weight.

We define each example as a pair of z; and y;, while X = {z;,...,2,} is a set
of short segments of an input sequence, and Y = {y;,...,yn} is a set of labels of X
with y € {1,—1}. (If z; is CDS, y; = 1; otherwise y; = —1.).

2.4. Weak learner

The weak learner of AdaBoost is an algorithm that produces an appropriate clas-
sifier in every boosting iteration. We use a very simple algorithm WL that tries
several prepared classifiers C;{i = 0,..., N} on examples S and select the most
accurate of all under the condition that each example (z;,y;) has a different weight
Wy, as follows.

S={(@i,y1)s-, (@n,yn)}-
WL(S) = argmax(C;(S)), (i =0,...,N).

Prepared classifiers C; have a score V; based on biological knowledge and produce an
optimal threshold T;; in every boosting round ¢. Values of scores V; are calculated
from the sequence information of z;, and then z; is classified according to Tj ;.

In the next section, we explain how the score V; is calculated.

2.5. Scores

We prepared three types of scores for weak learner, (1) a score based on amino
acid composition, (2) a score based on codon composition, and (3) a score based on
diamino acid k-composition. We obtained 21 scores from (1), including all amino
acids plus stop codons, 64 scores from (2), and n x 21 x 21 from (3). (n is the number
of k. If k=1 and k=2 are selected, n=2.) Comments on the scores are given below.

(1) Amino acid composition
Needless to say, the compositional bias of amino acids is a basic indicator for
detecting coding sequence. The scores counted all amino acids that appear in
the sample.

(2) Codon composition
Several codons were translated into the same amino-acid. For example, both
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CAT and CAC were coded as histidine. Such codon redundancy results in com-
positional bias, because mutations that do not change the amino acid translation
are accumulated more easily. Thus, this is helpful knowledge for distinguishing
coding sequence from untranslated regions. Scores are calculated as follows.

P(Ci)/P(a(Ci))
(i=0,...,63, a(C;) is an amino acid translated by codon C;).
(3) Diamino acid k-composition

To avoid the effect of amino acid composition, we normalize the joint probability
by each amino acid composition as follows.

P(A;, Bj)
P(A;) - P(Bj)

(1=0,...,20, j=0,...,20, A; and B; stand for one of twenty amino acids or a
stop codon.)

2.6. Markov model

Now we have three frames that have all codons labeled CDS or ELSE. The next
mission is to find the optimal path from frames. Fig. 3 shows the topology of a
Markov model. We temporarily detect frame-shift errors at the positions where a
frame is changed on the final path.

=
= ] ) )
‘@4

Fig. 3. The topology of the Markov model. Four states (CDS, ELSE, STC (start codon), SPC
(stop codon)) are defined, since each codon is classified into CDS or ELSE if the codon is not a
stop codon. ’ATG’ is alternatively labeled STC, CDS or ELSE according to the current score.

2.7. Modifying frame-shift error positions

Since ANGLE uses sliding-windows, the classification task is vague on the border
between CDS and ELSE. To overcome this problem, ANGLE corrects a temporal
frame-shift position p in a way that compares all candidate positions near p. That
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is, ANGLE deletes bases so as to correct detected frame-shifts at the positions from
p-w to p+w and recalculates the boosting score of a window of p; and then it chooses
the position that returns the best scores.

2.8. Parameters

For the classification process, we have to fix window size. The longer the size, the
higher the accuracy of classification is because we can obtain more information
from samples. However, the longer window is less sensitive to frame-shift positions.
ANGLE uses a heuristic value of 32 codons for window size as a default parameter.

The next parameter is k for diamino acid k-composition. Considering FEj, of
Fig. 2, we set k=1,... 4.

On tracing the best path process, we have to fix some parameters for DP calcu-
lation of Markov chains. We set heuristic values of 10 for the start value, -20 for the
frame changing penalty value. If the ’ATG’ appears on the path and the current
score is lower than the start value, the ’ATG’ is set to be a start codon, and the
current score is reset to 10, if not, the ’ATG’ is counted as just a ’ATG’.

2.9. Pseudocounts

In ANGLE, the system has to classify short segments of the target sequence by us-
ing related information that is not always sufficient. For example, scores for codon
composition require probabilities P(a(C;)) for a denominator. If a target segment
has strong bias for a(C;), the value is 0 and score will be infinite. Moreover, we have
441 pairs over 20 amino acids and a stop codon; this high number requires a longer
window to obtain sufficient information. To make up for any shortage, we employ
pseudocounts which modifies probabilities using background distribution. For ex-
ample, when a normal probability of amino acid or a stop codon 4; (i=0,...,20) on
a given window is calculated,

P(4;) = Counts A; on the window

windowsize

is used. Instead of using it, a probability with pseudocounts P’'(A;) is calculated as
follows.

counts A; on the window + a * counts A; on learning data

windowsize + « * learning data size

(a is an arbitrary parameter).

2.10. Separate learning from GC pressure

Some previous works!'?1617 reported GC compositional bias. Thus, ANGLE divides
data into four according to GC pressure: p < 43%, 43% < p < 51%, 51% < p < 57%,
57% < p, then trained classifiers separately.
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3. Materials

We extracted human mRNA entries from RefSeq database?®. Table 2 presents de-
tails of the data. Since RefSeq data has high quality and no sequencing errors, we
artificially insert/delete bases into/from original RefSeq data at random positions
to evaluate the accuracy of frame-shift detection. We also artificially mutate bases
at random positions because low quality sequence data contains not only frameshifts
but also base substitutions, which can make unexpected stop codons in CDS. We
expected about one sequencing error (one frame-shift error or one substitution er-
ror) in 200-500 nucleotides. Four types of data were prepared according to a ratio
of errors (i.e. Datal, Data2, Data3, Datad are just the same data with a different
error occurrence). Table 3 presents details of those data.

Table 2. Details of original RefSeq data.

Download date Taxonomy
Jan, 2005 Homo Sapiens
Num of Seqs Num of bases Num of bases in CDS
28,671 74,953,258 43,781,010
Num of Seqs of
[ < 1000 1000 <[ < 3000 3000 <1
4,756 15,260 8,655
Num of Seqs of
p < 43% 43% <p<51% B51%<p<5% 5% <p
6,289 8,706 6,007 7,669

[: length of sequence. p: GC pressure of sequence.

Table 3. Details of experimental data.

Ins Del Sub FR SR Rstart Rstop Astop
Datal 21,941 21,842 43,879 1.00 1.00 168 171 1,429
Data2 27,043 27,493 54,719 1.25 1.25 218 241 1,711
Data3 36,278 36,743 72,986 1.68 1.68 261 287 2,256
Datad 54,615 54,649 109,526 2.50 2.50 449 429 3,519

Ins: the number of insertions in CDS. Del: the number of deletions in CDS.
Sub: the number of substitutions in CDS. FR: the number of frameshifts per
1000 nucleotides. SR: the number of substitutions per 1000 nucleotides. Rstart:
the number of start codons which is replaced by other codon because of artificial
errors in CDS. Rstop: the number of stop codons which is replaced by other
codon because of artificial errors in CDS. Astop: the number of stop codons
which appear in CDS because of artificial substitutions.
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4. Training

As we described in Section 3, ANGLE is based on hybrid algorithm of boosting and
Markov model. A classifier (boosting) determines coding potential of each codon,
and Markov model traces a final path. While the classifier requires training data
with no error, Markov model requires data with errors for calculating parameters for
transition probability. Therefore classifier was trained and related parameters were
calculated on training data, which is extracted from original RefSeq. Parameters of
Markov chains were calculated on training data, which is the same source as the
data for training classifier, but has errors. We used training data which has one
frameshift and one substitution per 500 nucleotides.

5. Evaluation methods

We used 5-fold cross validation for experimental evaluation. Experimental data is
randomly divided into training data and evaluating data. The following criteria
were used to evaluate ANGLE.

e Sensitivity per nucleotide
e Specificity per nucleotide
e Correlation coefficient per nucleotide

Since sensitivity and specificity are trade-off criteria, we needed a balancing crite-
rion, the Matthews’ correlation coefficient?®, which was calculated as follows.

(tn = tp) — (fn * fp) '
V(tp+ fp) * (tn + fn) x (tp+ fn) * (tn + fp)

( tp: true positive, tn: true negative, fp:false positive, fn: false negative ).

For comparison, the predictions were computed not only with ANGLE but also
with ESTSCAN2.0!7. Both tools were executed with default parameters. We did
not try DECODER'® because it requires sequencing quality of every bases of all
data, which we cannot acquire.

6. Result

The results of computing for sensitivity, specificity, and the correlation coefficient
of coding regions predictions are given in Table 4. It is obvious that performance
of both ANGLE and ESTSCAN2.0 are better for low error rate data, since high
quality data is easy to evaluate coding potential. For original data, Datal, Data2
and Data3, ANGLE got better result than ESTSCN2.0, while its performance was
almost the same for Data 4. Since ESTSCAN2.0 is design mainly for ESTs, it is
tuned up to suit lower quality data.

The most remarkable result is the predictions of short sequences. Table 5 shows
each correlation coefficient separately computed according to the length of se-
quences. ANGLE performs about 9.26% better than ESTSCAN2.0 on sequences
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Table 4. Comparing prediction accuracy of ANGLE and
ESTSCAN2.0. All scores are computed per nucleotide.

Sensitivity  Specificity ~ Correlation coefficient

Original Data ( no sequencing error. )
ANGLE 96.65% 97.97% 92.96%
ESTSCAN2.0 93.12% 96.88% 88.28%

Datal( 1 frameshift or 1 substitution per 500 nucleotides. )
ANGLE 92.74% 97.21% 88.74%
ESTSCAN2.0 91.32% 96.45% 86.18%

Data2( 1 frameshift or 1 substitution per 400 nucleotides. )
ANGLE 91.72% 97.05% 87.72%
ESTSCAN2.0 90.64% 96.31% 85.46%

Data3( 1 frameshift or 1 substitution per 300 nucleotides. )
ANGLE 89.90% 96.71% 85.82%
ESTSCAN2.0 89.29% 95.98% 83.89%

Datad( 1 frameshift or 1 substitution per 200 nucleotides. )
ANGLE 86.84% 96.12% 82.57%
ESTSCAN2.0 87.67% 95.64% 82.14%

shorter than 1000. For examples, ANGLE scored 89.53% while ESTSCAN2.0 scored
75.84% on original data. Detail result of short sequences is shown in Table 6.

The scores of ANGLE are balanced, while those of ESTSCAN2.0 are rather
spread against sequence length. On Table 5, a difference between the score of short
sequences and that of longer sequences shows that the performance of ANGLE is
more independent than that of ESTSCAN2.0. For example, ANGLE scored 1.69%
while ESTSCAN2.0 scored 7.18% for L2 — L1 on Datal.

ANGLE does not depend on the length of a target sequence, because it predicts
coding regions with only information from short windows. On the other hand, HMM
is a relatively length-dependent method. In Viterbi process of HMM, the scores of
each state are piled with the result that longer sequences have a larger gap between
the score of the correct path and that of the wrong path, while shorter sequences
have smaller gaps. HMM normalizes involved scores to avoid length-dependency,
but still It does because choosing optimal parameters are difficult task especially
for short sequences.

7. Discussion

In this article, we have described a new program ANGLE that predicts coding
sequences in low quality cDNA. We proposed the hybrid method of machine learning
and Markov model, which can model protein structure. We also described some
practical techniques to implementation, such as pseudocounts, which makes up for
shortage of information of a short segment, and so on.
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Table 5. Comparing prediction accuracy of ANGLE and ESTSCANZ2.0 on three types
of data that are divided according to the length (1) of input sequences. All scores are
computed per nucleotide.

Correlation coeficient score
L1 L2 L3
[ <1000 1000 < < 3000 3000 < L2—-L1 L3-1L1

Original Data ( no sequencing error. )
ANGLE 89.53% 90.12% 95.25% 0.59% 5.72%
ESTSCAN2.0 75.84% 84.65% 91.98% 8.81% 16.14%

Datal( 1 frameshift or 1 substitution per 500 nucleotides. )

ANGLE 84.03% 85.73% 91.21% 1.69% 7.18%

ESTSCAN2.0  73.72% 82.60% 89.83% 8.87% 16.10%
Data2( 1 frameshift or 1 substitution per 400 nucleotides. )

ANGLE 82.00% 84.49% 90.46% 2.48% 8.45%

ESTSCAN2.0  73.03% 81.97% 89.08% 8.94% 16.04%
Data3( 1 frameshift or 1 substitution per 300 nucleotides. )

ANGLE 80.05% 82.45% 88.61% 2.40% 8.56%

ESTSCAN2.0  71.95% 81.25% 86.86% 9.30% 14.91%
Data4( 1 frameshift or 1 substitution per 200 nucleotides. )

ANGLE 75.40% 79.25% 85.42% 3.85% 10.02%

ESTSCAN2.0  70.17% 79.70% 84.93% 9.54% 14.77%

ANGLE has a remarkable advantage of less dependency on sequence length
compared with HMM based algorithms, because our algorithm evaluate optimal
coding potential independently from a small window of an input sequence. Since
predicting shorter sequences is much harder than predicting longer sequences, this
advantage facilitates practical analysis of mRNA. We have shown in our evaluation
that ANGLE achieved higher performance than the conventional tool. When input
sequences are shorter than 1000 nucleotides, the average performance is about 9.26%
better than that of ESTSCAN2.0 in computing Matthews’ correlation coefficients.
ANGLE has an average sensitivity of 91.57% and an average specificity of 97.01%
on total dataset ( Four datasets with one frame-shift error or one substitution error
per 200-500 nucleotides and one dataset with no error). This result is 2.38% better
than the performance of ESTSCAN2.0 in computing a correlation coefficient.

In addition to high performance, ANGLE provides utility. When a mRNA is
analyzed, coding potential of each codons helps annotation tasks. ANGLE also
provides detailed boosting score as well as classification result, which can be used for
concrete coding potential. On the process of classification, ANGLE does not require
large training dataset comparing to HMM which require thousands of parameters
for training. Some kinds of genomes like virus are difficult to train HMM because
those genomes are of small size?”. ANGLE may help this problem.

Our method can be applied to ESTs with small modifications of the Markov
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Table 6. Details of comparing prediction accuracy of ANGLE and
ESTSCAN2.0 on short cDNA (<1000). All socres are computed
per nucleotide.

Sensitivity — Specificity = Correlation coefficient

Original Data ( no sequencing error. )
ANGLE 94.22% 96.69% 89.53%
ESTSCAN2.0 80.88% 93.87% 75.84%

Datal( 1 frameshift or 1 substitution per 500 nucleotides. )
ANGLE 89.03% 95.72% 84.03%
ESTSCAN2.0 79.12% 93.42% 73.72%

Data2( 1 frameshift or 1 substitution per 400 nucleotides. )
ANGLE 87.23% 95.33% 82.00%
ESTSCAN2.0 77.84% 93.26% 73.03%

Data3( 1 frameshift or 1 substitution per 300 nucleotides. )
ANGLE 85.42% 94.98% 80.05%
ESTSCAN2.0 77.14% 92.94% 71.95%

Data4( 1 frameshift or 1 substitution per 200 nucleotides. )
ANGLE 81.02% 94.21% 75.40%
ESTSCAN2.0 75.36% 92.70% 70.17%

model and a window size. Since ESTs are a part of full-length cDNA, a model
without a start codon and a stop codon are required, and shorter window size will
perform well.

We have two suggestions for further improvement. The first is adding specific
models of boundary sites. In this study, our system did not have models of start
and stop sites. However, those sites have some consensus?®?°, and modeling them
may increase the accuracy of coding region boundaries. The second suggestion is
using a dynamic penalty for frame-shift errors.

From the viewpoint of machine learning, using Support Vector Machines as a
comparative classifier of boosting algorithms is an interesting trial.

8. Availability

We implemented our method as a web application which can be accessed from:
http://angle.muraoka.info.waseda.ac.jp. The server is freely available to both aca-
demic and commercial users. A stand alon software and source code are available
upon request.
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