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ABSTRACT
Motivation: Computational gene finding systems play an important
role in finding new human genes, although no systems are yet
accurate enough to predict all or even most protein-coding regions
perfectly. Ab initio programs can be augmented by evidence such as
expression data or protein sequence homology, which improves their
performance. The amount of such evidence continues to grow, but
computational methods continue to have difficulty predicting genes
when the evidence is conflicting or incomplete. Genome annotation
pipelines collect a variety of types of evidence about gene structure
and synthesize the results, which can then be refined further through
manual, expert curation of gene models.
Results: JIGSAW is a new gene finding system designed to auto-
mate the process of predicting gene structure from multiple sources
of evidence, with results that often match the performance of human
curators. JIGSAW computes the relative weight of different lines of
evidence using statistics generated from a training set, and then com-
bines the evidence using dynamic programming. Our results show that
JIGSAW’s performance is superior to ab initio gene finding methods
and to other pipelines such as Ensembl. Even without evidence from
alignment to known genes, JIGSAW can substantially improve gene
prediction accuracy as compared with existing methods.
Availability: JIGSAW is available as an open source software pack-
age at http://cbcb.umd.edu/software/jigsaw
Contact: jeallen@umiacs.umd.edu

1 INTRODUCTION
Determining the true set of human genes has turned out to be a
much harder problem than many expected; the exact number of
genes has gradually decreased since the publication of the draft
human genome in 2001 (International Human Genome Sequencing
Consortium, 2001; Venter et al., 2001), but it has not stabilized.
The protein-coding regions of many human genes are generally
agreed upon, but even for these, the precise gene structure, com-
prising the boundaries of all the exons and of the coding sequence,
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remains less than certain. Evidential support for existing genes var-
ies widely, from tentatively defined to experimentally confirmed.
For some rarely expressed genes, the evidence is limited to a small
number of expressed sequence tags (ESTs) and to the overlapping
but inconsistent predictions of multiple gene finders. For some loci,
evidence of expression is absent but evidence from protein sequence
alignments to other species strongly suggests the presence of a gene.
Many human genes have been carefully confirmed through full-
length cDNA sequencing, the remapping of those cDNAs to the
original chromosomes is considered the ‘gold standard’ for defining
the true exon–intron structure. The numerous genes for which full-
length cDNA sequences have not been generated pose an ongoing
challenge in our efforts to produce complete and accurate predictions
of all genes.

To illustrate this challenge, we consider an example from human
chromosome 20, shown (Fig. 1) in a display from the UCSC genome
browser, which provides an interface to a collection of programs that
have been run on each human chromosome. Figure 1 shows gene
predictions from several gene finding programs, plus alignments of
both protein and cDNA data from Swiss-Prot (Bairoch et al., 2005),
UniGene (Wheeler et al., 2003) and the TIGR Gene Index (Lee et al.,
2005). Despite strong evidence for a gene in Figure 1, the various
programs disagree on the precise gene structure. It is possible that
zero, one, or multiple different predictions are correct. Currently it
is left to the user to decide what evidence to use for gene structure
prediction.

One track shown in Figure 1 is the Ensembl prediction (fourth row
from the top), generated by the Ensembl group’s automated method
for integrating various forms of evidence. Ensembl, one of the lead-
ing genome annotation systems, applies a collection of rules to decide
when to use the output from different prediction programs, depend-
ing on the type of evidence available for a particular gene (Curwen
et al., 2004). The rules attempt to filter out unreliable data, leaving
only high quality alignments for use in prediction. A strength of this
approach is that strict criteria are established to identify high qual-
ity alignments, which is particularly useful when complete cDNA
sequence can be mapped to the originating chromosome. Applying
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JIGSAW: integration of multiple sources of evidence

Fig. 1. Gene structure evidence from the UCSC human genome annotation database (chromosome 20). Each row shows evidence generated from a
distinct source.

criteria that are too strict, however, will miss genes that are not sup-
ported by expression data (for example), even if those genes are
supported by other forms of evidence. One of the goals of JIGSAW
is to capture more of these genes through an automated, statistically
principled method for weighing the different evidence sources.

JIGSAW uses a manually curated gene set, along with all of the
alignments and predictions associated with that set, to collect stat-
istics on the accuracy of the gene prediction evidence. The goal
is to provide consistent, reproducible predictions based on sound
statistical principles, even in cases of conflicting evidence about
gene structure. The program is a successor to our earlier Com-
biner system (Allen et al., 2004). JIGSAW and Combiner have been
used by annotators as the basis for gene calls in several recently
sequenced organisms, including Oryza sativa (rice) (Buell et al.,
in press) and Cryptococcus neoformans (Loftus et al., 2005). This
paper describes several new algorithmic developments, explains the
relationship between the JIGSAW algorithm and generalized hid-
den Markov models (GHMMs), and evaluates JIGSAW’s prediction
accuracy on the human genome. Our experiments show that JIG-
SAW’s accuracy on both exon prediction and whole-gene prediction
is superior to other methods.

2 SYSTEMS AND METHODS
Computational gene finding programs are designed to model different aspects
of protein coding genes, often using different statistical models for different
parts of a transcript. For example, 3-periodic inhomogeneous interpolated
Markov models (IMMs) have proven successful at modeling protein cod-
ing intervals (Salzberg et al., 1999), and decision trees (Burge and Karlin,
1997) have been used to capture dependencies between non-adjacent nuc-
leotides near splice junctions. JIGSAW is able to take advantage of diverse
models and evidence types and to combine them into frame-consistent gene
predictions using dynamic programming. Here we define our dynamic pro-
gramming algorithm for computing an optimally scoring parse of a genome
sequence, where the parse directly corresponds to a prediction of exon–intron
structure.

We represent the components of a gene with a collection of gene structure
labels Y = {Initial, Internal 1, Internal 2, Internal 3, Intron 1, Intron 2,
Intron 3, Terminal, Single, Intergenic}, with each element y ∈ Y matching
an exon, intron or intergenic region. The three distinct labels for introns and
for internal exons (Internal 1, Internal 2 and Internal 3) are required to track

the phase in cases where an intron interrupts a codon. Four signal types are
allowed: start codons, stop codons, and splice junctions (acceptor and donor
sites), which denote the beginning and ending (5′ and 3′ ends) of introns.
Internal exons begin one base downstream of acceptor sites and end one base
upstream of donor sites. By default, the acceptor site is an AG dinucleotide,
and the donor site is either a GT or GC dinucleotide. As an option, the user can
replace the default set of consensus splice sites with a custom dinucleotide set.
To specify which DNA strand each gene occurs on, separate labels are defined
for each strand (e.g. ‘Initial Plus Strand’, ‘Initial Minus Strand’ and ‘Internal 1
Plus Strand’) with the Intergenic label applied to both strands. Distinct genes
are not permitted to overlap even if they occur on opposite strands. Without
loss of generality we define the problem for predicting genes on one strand,
which can be extended to both strands using the expanded set of labels. As
implemented, JIGSAW predicts genes on both strands simultaneously.

Let S be a genome sequence and S[i, j ] be the subsequence from pos-
ition i to j (inclusive). A parse of genome sequence S, t = (t0, t1, . . . , tn)
consists of partitions ti = (bi , ei , yi) with subsequence S[bi , ei ] assigned
label yi and t spanning the entire length of S. The parse covers each nuc-
leotide in the sequence so that bi+1 = ei + 1. For example, the parse for
a 1000-base genome sequence containing a single-exon beginning at pos-
ition 120 and ending at position 730 would be t = [(0, 119, Intergenic),
(120, 730, Single),(731, 999, Intergenic)]. The gene prediction problem is to
find a parse t to maximize the joint probability of t and S: maxt P (t , S).
The problem is made tractable by imposing a Markov assumption, so that
label yi in partition ti depends only on the previous label yi−1 leading to
P(t , S) = ∏n

k=0 P(tk , S).
Figure 2 shows a generalized hidden Markov model (GHMM) to parse

genomic sequence using the Markov assumption, where states in the GHMM
correspond to labels. A GHMM is defined by a set of states Q with states q

and q′, and an initial state probability P(q); a set of transitions from q′ to q

with probability P(q|q′); a set of probabilities P(S[i, j ]|q) representing the
probability of generating subsequence S[i, j ] in state q and a set of probab-
ilities Pq(l) for the likelihood of generating a sequence of length l in state q.
Using the GHMM, the joint probability for parse t and sequence S is

P(t , S) =
∏
k

P (tk , S) = P(S[b0, e0]|q0) · P(q0) · Pq0 (e0 − b0 + 1).

n∏
k=1

P(S[bk , ek]|qk) · P(qk |qk−1) · Pqk
(ek − bk + 1).

The JIGSAW dynamic programming algorithm finds the most probable
parse for S of length l using an l × |Q| matrix D. Moving from left to right
in the sequence, the highest scoring series of states ending in position j with

3597



J.E.Allen and S.L.Salzberg

Fig. 2. Generalized hidden Markov model for predicting gene structure in
genomic sequence. States represent Initial, Internal, Terminal and Single
exons, respectively, plus Intron and Intergenic sequence.

state q assigned to the subsequence from i to j is stored in

D(j , q) = max
i,q′ P(S[i, j ]|q) · P(q|q′) · Pq(j − i + 1) · D(i, q′),

where D(j , q) is initialized to P(S[0, j ]|q) ·P(q) ·Pq(j +1). The most prob-
able parse spanning the sequence S is then found by retracing the sequence
of states ending in maxq D(l − 1, q). Stop codons are not allowed to span
two adjacent exons within the same gene. When leaving an intron state (using
the dynamic programming algorithm), the upstream and downstream exons
are checked for the possible occurrence of a stop codon spanning the two
adjacent exons. If a stop codon is found, the parse must end in the current
intron state.

2.1 Representing gene structure evidence
Gene prediction using a set of evidence sources introduces an additional
input parameter E, defined to be the gene structure evidence mapping to S.
Figure 3 shows an example representation of annotation data for four sources
of evidence: two gene prediction programs, GP1 and GP2 (GP2 reports a con-
fidence score of 0.65), and two alignments to expression data with 86% and
95% identity, respectively. JIGSAW allows each evidence source to predict
up to six gene features:

• start codon (sta)

• stop codon (stp)

• intron (inr)

• protein coding nucleotide (cod)

• donor (don)

• acceptor (acc)

The function

fk(S, E) = {(sta0
k , . . . , stam0

k ), (stp0
k , . . . , stpm1

k ), (inr0
k , . . . , inrm2

k ),

(cod0
k , . . . , codm3

k ), (don0
k , . . . , donm4

k ), (acc0
k , . . . , accm5

k )}
returns a set Bk of six feature vectors, one for each feature type, for each
position k occurring in S. One example for each feature type is shown in
Figure 3. For example, the start codon feature vector for position k0—the
evidence that a protein starts in that position—is (1, 0.65, 0, 0) because GP1
and GP2 both predict the beginning of a protein here, but the sequence
alignment evidence predicts a gene to start downstream at position k1. In
general, feature vector vtype = v(Bk , type) = (type1

k , . . . , typem
k ) reflects

what program x predicts with confidence typex
k on nucleotide S[k, k], and

gi,j = gi,j (E, S) = (Bi , . . . , Bj ) are the sets of feature vectors from position

i to j. In Figure 3 the feature vector set for k0 is

Bk0 = {vsta , vstp, vinr , vcod, vdon, vacc}
= {(1, 0.65, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),

(1, 0.65, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)}.
The vector set Bk0 asserts that GP1 and GP2 predict a start codon at k0,
which implies a coding interval, and no other predictions overlap k0. JIGSAW
accepts any raw exon prediction score from an evidence source; however,
the score should represent the program’s confidence in the accuracy of its
prediction. For example, the percent identity value of a transcript aligned to
the target genomic sequence can be used as the confidence score, with the
presumption that similar transcripts are more reliable predictors of genes than
dissimilar transcripts. In cases where an evidence source does not report a
confidence value (such as GP1 in Fig. 3), the entry in the feature vector is 1
or 0 to indicate the presence or absence of a prediction, respectively.

The input sequence S determines the type of prediction. For example, the
cDNA alignment in Figure 3 is presumed to predict a donor site at k3 since
the alignment stops at this position and begins again at position k4. However,
the function fk(S, E) checks the sequence to ensure that a consensus splice
site occurs at k3, and k4. Programs are assumed to predict a feature only
when the feature is consistent with the sequence. The size of each feature
vector - m0, . . . , m5 can differ, so that the set of programs used to predict
each type, sta, stp, inr, cod, don and acc, are assumed to be independent.
Therefore, programs designed to predict only one part of the gene can be
used in addition to sources that predict complete genes. Evidence for introns
typically comes indirectly from gene finders and sequence alignment data.
For example, in Figure 3, the evidence for an intron from k3 + 1 to k4 − 1
is implied by three of the four evidence sources, since each source predicts
flanking exons.

In Figure 3, positions from k4 + 1 to k5 − 1 return the same set of feature
vector values:

{(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),

(1, 0.65, 0.86, 0.95), (0, 0, 0, 0), (0, 0, 0, 0)}.
In cases like this, where Bk = Bk−1, JIGSAW compresses the two sets in
one. To capture important neighboring features each Bk includes Bk−1, Bk

and Bk+1 (when k = 0, Bk−1 is defined to be a 0 valued vector).
To find the parse with the highest-score, maxt P (t , S, E), JIGSAW uses

the dynamic programming matrix where D(j , q) is initialized to

P(g0,j |q, S[0, j ]) · P(S[0, j ]|q) · P(q) · Pq(j + 1)

and

D(j , q) = max
i,q′ P(gi,j |q, S[i, j ]) · P(S[i, j ]|q) · P(q|q′)

· Pq(j − i + 1) · D(i, q′).
Assuming independence, the probability of generating the feature vectors
from i to j in a given state q is P(gi,j |q, S[i, j ]) = ∏j

k=i P (Bk |q, S[i, j ]),
but modeling Bk poses a problem because the distribution of percent identity
values from the sequence alignments cannot easily be combined with the
confidence values from the gene prediction programs. Moreover, even if we
assume that each of the prediction programs only generates discrete values,
the number of parameters grows exponentially with respect to the number of
programs in the annotation database.

2.2 Predictions conditioned on input evidence
To improve flexibility in the type and amount of evidence used, an independent
conditional probability is defined for each of the six gene features, type =
{sta, stp, inr, cod, don, acc}. The independence assumption is justified by the
fact that the collection of programs used to predict each gene feature type is
assumed to be independent. In practice this is not true, since many programs
are used to predict all six features (and the input sequence is the same);
however, assuming independence reduces a large number of the statistical
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Fig. 3. Representation of four sources of gene structure evidence mapping to genome sequence S. Two gene prediction programs (GP1 and GP2), a cDNA
alignment with 86% identity to S and an EST alignment with 95% identity to S. Examples of the six features, start (sta), stop (stp), coding (cod), intron (inr),
donor (don) and acceptor (acc) encoded in feature vectors are shown. The predicted exon boundaries are k0, . . . , k6.

parameters. An estimate is made for the probability of a gene feature of
type occurring at position k given the feature vector for type at position k:
P(typek |vtype).

The function h(q, k, type, S[i, j ], Bk) ={
P(typek |vtype) type aligns with q
1 − P(typek |vtype) otherwise

}

checks to see if the gene feature, type, should occur at position k when
predicting the state q to align to subsequence S[i, j ]. As an example, when
state q is Initial, the first nucleotide (at position i) should correspond to the
beginning of a start codon and to the first coding region for a protein. In
this case, h(q, i, sta, S[i, j ], Bi) = P(stai |vsta), h(q, i, cod, S[i, j ], Bi) =
P(codi |vcod) and h(q, i, type, S[i, j ], Bi) = 1 − P(typei |vtype) for the four
remaining feature types (stp, inr, don and acc). The probability that JIGSAW
tries to compute for P(q|gi,j , S[i, j ]) when q is Initial is the probability of
a start codon at position i given the evidence for a start codon, times the
probability of a coding interval from i to j given the evidence, times the
probability of a donor site at j + 1 given the evidence, times the probability
that no conflicting features occur.

In general, the probability of state q aligning to subsequence S[i, j ]
given all the feature vectors gi,j between i and j is the product of
probabilities for each set of feature vectors Bk : P(q|gi,j , S[i, j ]) =∏j

k=i

∏
type h(q, k, type, S[i, j ], Bk), where type enumerates over all six gene

features. The model makes the simplifying assumption that each feature
vector set, Bk , is independent. Note that the Intergenic state is not expli-
citly modeled. Intergenic sequence is defined to be the absence of evidence
predicting gene features in the sequence:

P(Intergenic|gi,j , S[i, j ]) =
j∏

k=i

∏
type

1 − P(typek |vtype).

A gene finder like JIGSAW that uses other gene finders as input should build
on the success of existing gene finders rather than duplicating their function.
Therefore, we construct a probabilistic model to compute the probability of
a parse conditioned on the input evidence. [Related work in natural language
processing (Sarawagi and Cohen, 2004) has demonstrated useful applications
of conditional probabilities in graphical models.] The most probable parse t
given S, maxt P (t |S, E) is used to make predictions. The inference algorithm
for finding maxt P (t |S, E) uses the dynamic programming matrix

D(j , q) = max
i,q′ P(q|gi,j , S[i, j ]) · P(q|q′) · D(i, q′),

where D(j , q) is initialized to P(q|g0,j , S[0, j ]) · P(q).
For each scored parse, the six feature types contribute to each independent

probability, in some cases predicting support for the parse and in other cases
predicting support against the parse. Since each possible parse is scored using
the same fixed number of independent random feature type events, the length

of an exon, intron or intergenic sequence interval is dependent solely on the
evaluation from the feature type models and the state transition probabilities.

2.3 Parameter estimation
Feature models are estimated for P(sta|vsta), P(stp|vstp), P(inr|vinr),
P(cod|vcod), P(don|vdon) and P(acc|vacc) through enumeration over labeled
sequences in a training set. Each feature model, sta, stp, inr, cod, don and
acc, is trained independently. As an example, in Figure 3, the index into fk0

for start codons is vsta = (1, 0.65, 0, 0). The training procedure counts the
number of times the evidence (1, 0.65, 0, 0) occurs in the training data and
the percentage of cases where (1, 0.65, 0, 0) correctly predicts the start codon
location. The operating assumption is the more evidence predicting a start
codon with high confidence the greater chance that a start codon actually
occurs. Thus, the training set should show that when all sources of evidence
predict a start codon with high confidence [e.g. vsta = (1, 1, 1, 1)] the prob-
ability of a start codon is much higher than when no evidence predicts a start
codon [e.g. vsta = (0, 0, 0, 0)].

Simple counting methods do not accurately estimate actual probability val-
ues because the sample space is theoretically infinite (in practice it is finite
but extremely large). For example, (1, 0.66, 0, 0) may not occur in the training
set, while (1, 0.65, 0, 0) happens to occur 50 times showing 80% accuracy,
resulting in P(sta|(1, 0.65, 0, 0)) = 0.8 and leaving P(sta|(1, 0.66, 0, 0))

undefined. To avoid the problem of a large sample space, the observed fea-
ture vectors are first divided into two groups, accurate and inaccurate. For
each feature vector vtype , c(vtype) is the percentage of cases in which vtype is
observed to correctly predict type. vtype is assigned to the group accurate if
c(vtype) > 0.5 and inaccurate otherwise.

A decision tree is induced to partition the feature vector space into subre-
gions, distinguishing feature vectors in the accurate set from feature vectors
in the inaccurate set. For the human genome data, JIGSAW uses the OC1
(Murthy et al., 1994) decision tree system to create these trees. Each ele-
ment of the feature vector is tested for ‘yes’ or ‘no’ questions to separate the
accurate set from the inaccurate set. From the example in Figure 3, a trivial
one-node decision tree is ‘Is GP2’s confidence value >0.5?’, which parti-
tions the data into two disjoint sets. These sets can be partitioned further by
building a larger tree, but OC1 implements procedures to avoid partitioning
the data too finely. It does this by withholding 10% of the data to determine
when to stop building the tree. As the tree is built, its classification accuracy is
tested on the hold-out set, and tree-building terminates when the classification
accuracy drops below a threshold.

The decision tree captures in an automated way a set of rules that is similar
to those used in a rule based system such as Ensembl, where percent identity
cutoffs are used to make a prediction. For example, a simple prediction rule
might be that a gene is valid if predicted by one gene finder and by align-
ment to a non-human RefSeq protein with 98% nucleotide identity. Figure 4
shows example protein coding (cod) feature vectors for non-human RefSeq
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Fig. 4. The plot on the left side of the figure shows the accuracy of predictions based on alignments to non-human sequences that overlap a gene finder’s
predictions. Each point is a pair of alignments observed in training and their percent identity to the genomic sequence. ‘+’ points are labeled ‘accurate’ and ‘x’
points are labeled ‘inaccurate.’ The two lines correspond to the non-leaf nodes in the decision tree shown on the right side of the figure.

alignments and non-human cDNA alignments, where a gene finder made an
overlapping prediction. Each point in Figure 4 shows the percent identity of
the respective alignments. An example is marked ‘+’ if it is in the accurate
class and ‘x’ if it is in the inaccurate class. The decision tree creates three
partitions, which determine the cutoff values. Examples in the training set
show that a threshold of 95% for either source of alignments is an accurate
predictor of a protein coding region. When both alignments are <95%, the
accuracy is questionable.

We can still make use of the examples below the 95% percent identity cutoff
using the average probability from the individual examples. For feature vector
vtype and decision tree βtype, V = βtype(vtype) is the list of the feature vectors
from training, grouped into a local region. In Figure 4, evaluating the evidence
vector (0.58,0.52) returns the set of examples in V3. The probability estimate
is the average accuracy of the individual examples in V3. In general, the prob-
ability of type given feature vector vtype is P(type|vtype) = ∑

v∈V c(v)/|V |,
where |V | is the size of V .

In the earliest Combiner implementations (Allen et al., 2004), each evid-
ence source was assigned an independent weight, which was shown to be
effective in some cases. However, assuming independence precludes the
inclusion of potentially useful sources of evidence, such as predictions from
a single gene finder using two different parameter settings. The JIGSAW
training procedure addresses the problem of interdependence by evaluating
the accuracy of each observed evidence combination. If observed correlated
sources produce similar predictions the decision tree induction algorithm can
ignore a redundant source. When differences are observed, the decision tree
can treat the case where correlated evidence sources overlap differently from
the case where the evidence sources do not overlap.

3 RESULTS AND DISCUSSION
We used two test sets to evaluate the accuracy of JIGSAW on human
gene prediction. For the first, we selected 1563 genes at random
(uniformly distributed among the 24 chromosomes) from a set of
17 477 non-redundant RefSeq genes (Pruitt et al., 2005). We elim-
inated genes that are known to exhibit alternative splicing, although
of course many alternative splice forms are still unknown and there-
fore some of the 1563 genes may still have multiple splice variants.
We estimated accuracy using 3-fold cross validation, training on
2/3 of the data and testing on 1/3, and averaging results for the
three experiments. For the second test, we used annotations from
the Havana group (Ashurst et al., 2005) in the 44 ENCODE regions

(The ENCODE Project Consortium, 2004), which span ∼1% of the
human genome. The 44 ENCODE regions do not overlap with the
1563 genes from our first set and do include known alternatively
spliced genes.

JIGSAW predictions were based on the sequence using the default
consensus splice sites (GT/GC and AG) and a collection of evid-
ence from an annotation database. Annotation data was downloaded
from the UCSC genome annotation database (http://hgdownload.
cse.ucsc.edu/goldenPath/hg17/database) using NCBI Build 35;
examples of this evidence are shown in Figure 1.

The main evidence types are as follows:

• cDNA from human genes

• UniGene transcripts (Wheeler et al., 2003)

• GenBank cDNAs matching Swiss-Prot and TrEMBL proteins
(Bairoch et al., 2005) aligned using BLAT (Kent, 2002) to the
genome with at least 98% identity

• cDNA sequences from non-human species

• RefSeq genes from non-human species

• the TIGR Gene Index (Lee et al., 2005) (includes both
assembled human and related non-human ESTs)

• ab initio gene finders: Genscan (Burge and Karlin, 1997),
Geneid (Guigo, 1998), GeneZilla and GlimmerHMM (Majoros
et al., 2004)

• Alignment-based gene finders: Twinscan (Flicek et al., 2003)
and SGP (Parra et al., 2003) (uses mouse-human sequence
conservation)

• Predicted conserved elements from phylogenetic analysis
(Siepel and Haussler, 2003)

For each of the 1563 test genes JIGSAW was run on an interval that
included 50 000 bases of upstream and downstream sequence. If test
genes occurred in overlapping regions, the regions were merged to
form a longer contiguous sequence. At a minimum, therefore, each
input sequence contains over 100 000 bases. Three prediction criteria
were measured: accuracy on genes, on exons and on nucleotides.
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Table 1. Prediction performance on 1563 test genes for JIGSAW and for the most accurate of the evidence sources

Gene Exon Nucleotide Missed gene Missed exon Wrong exon
Sens Spec Sens Spec Sens Spec

JIGSAW—All 58 63 86 89 90 98 13 9 1
JIGSAW 59 66 87 89 90 98 14 10 1
JIGSAW - No Ensembl 55 62 86 88 90 98 14 10 1
Ensembl 62 50 85 80 85 95 16 11 3
cDNA alignments 65 38 84 77 82 93 20 14 3

The first three rows refer to JIGSAW predictions using different combinations of evidence: JIGSAW using all input (JIGSAW—All); excluding explicit non-human expression
evidence (JIGSAW); and excluding Ensembl (JIGSAW—No Ensembl). The last two rows show accuracy for Ensembl and cDNA alignments matching Swiss-Prot/TrEMBL proteins,
respectively. Columns refer to sensitivity (Sens) and specificity (Spec) for genes, for exons and for coding nucleotides. The remaining columns show the percentage of completely
missed genes, completely missed exons and predicted exons contained entirely in non-coding regions. The highest performance score for each column is highlighted in bold.

A gene-level prediction was counted correct only if the entire exon
structure matches the test gene, from start codon to stop codon,
including all intron boundaries. Non-coding exons were not included
in these tests. For an exon prediction to be counted correct both the
5′ and 3′ boundaries must match the test exon exactly. A predicted
protein coding nucleotide was counted correct when it matched a
protein coding nucleotide in a test gene. Sensitivity is defined here
as the percentage of true genes (exons) that were correctly predicted,
and specificity is the percentage of the predicted genes (exons) that
are correct.

On average, Ensembl predicts 1.2 isoforms per gene locus, and
the alignments matching the Swiss-Prot/TrEmbl proteins generate
an average of 1.7 distinct isoforms per test gene. In order not to pen-
alize any of the programs for predicting correct alternatively spliced
genes, if any one of the predicted isoforms matched the ‘true’ gene,
the prediction was counted as correct. However, multiple identical
predictions at the exon and nucleotide level were not double-counted
when computing specificity.

Table 1 shows results for the 1563 test set using different com-
binations of evidence, along with the two single most accurate
evidence sources, Ensembl and the cDNA alignments matching
Swiss-Prot/TrEMBL proteins. One objective of this study was to
evaluate how closely JIGSAW predictions matched the human-
curated set. When JIGSAW has access to the same information as
a human curator, the goal should be to report the most accurate
gene predictions possible, subject to the constraints of the available
evidence. Wherever JIGSAW matches the RefSeq gene, it would
appear that the program is matching the ability of human curat-
ors. The first row in Table 1, JIGSAW—All, shows JIGSAW output
using all available evidence, including the gene finders, cross-species
conservation and expression evidence, including known proteins
plus Ensembl. Interestingly, while this version yields nearly the
best performance, the second row, JIGSAW, shows the results from
excluding evidence from the explicit non-human gene expression
sources. Excluding the explicit non-human expression evidence res-
ults in slightly more genes and exons being missed completely, but
the remaining prediction accuracy measures increase.

In theory, when JIGSAW uses both Ensembl predictions and
the cDNA alignments from Swiss-Prot/TrEMBL as input, it should
either match or improve upon the accuracy of the those lines of
evidence. The analysis is complicated by the fact that both Ensembl
and the cDNA alignments predict multiple isoforms, while JIGSAW

predicts (in its current implementation) only a single isoform. This
shows up in the number of whole genes predicted correctly (Gene
Sensitivity in Table 1), the one accuracy measure where JIGSAW
does not have the best results. Predicting multiple isoforms enables
Ensembl to predict 62% of the genes exactly correct, and the aligned
cDNA correctly capture 65% of the genes, compared with JIGSAW’s
59%. For 50% of JIGSAW predictions not matching a RefSeq gene,
Ensembl or a cDNA alignment match the test gene while predict-
ing additional isoforms. Since JIGSAW assembles a single isoform,
while looking at all of the possible local gene features, the algorithm
can merge the predicted isoforms into a single gene. Despite this
potential limitation, JIGSAW is able to correctly detect as many
or more exons completely correct as the underlying sources while
picking up 5% more of the true protein coding nucleotides and com-
pletely missing less genes and exons. Moreover, the combination
of specificity and sensitivity in JIGSAW is high. With 90% of pro-
tein coding nucleotides correctly detected, 66% of JIGSAW’s gene
predictions exactly match a RefSeq gene, showing a strong balance
between detecting genes and making accurate predictions.

Row three in Table 1 (JIGSAW—No Ensembl) shows JIGSAW
performance when the Ensembl predictions were excluded from its
input. While JIGSAW benefits from Ensembl input, JIGSAW is able
to make predictions without Ensembl and achieves comparable per-
formance. The overall number of correctly detected genes drops
slightly, but for all other measures JIGSAW’s accuracy is superior.

It is important that computational gene finders be able to identify
genes even when evidence from known curated human proteins is not
available. Table 2 shows results for JIGSAW when we excluded the
Swiss-Prot/TrEMBL protein evidence from its input. The first two
rows in Table 2 show JIGSAW’s results when the curated proteins
were not used as evidence, but instead we used expression evidence.
Using only human expression data appears to improve performance
slightly in most categories, but at the cost of missing 1% more of the
genes completely and 1% more of the protein coding nucleotides.
Without benefit of the cDNA alignments matching the curated pro-
teins as input, overall performance drops; however, JIGSAW still
correctly detects 88–89% of the protein coding nucleotides and 41–
42% of the test genes. The third row in Table 2 shows JIGSAW’s
performance when we excluded all expression data, using only the
gene finders and sequence conservation as evidence. While perform-
ance drops still further, the results show that JIGSAW still does better
than ab initio gene finders.

3601



J.E.Allen and S.L.Salzberg

Table 2. Prediction performance on 1563 test genes, excluding the use of curated human proteins

Gene Exon Nucleotide Missed gene Missed exon Wrong exon
Sens Spec Sens Spec Sens Spec

JIGSAW-humanEST 42 45 84 82 88 97 15 10 1
JIGSAW-AllEST 41 44 83 81 89 97 14 10 2
JIGSAW-NoEST 18 16 73 63 84 93 12 16 7
Twinscan 15 14 63 63 75 90 24 26 9
SGP 12 10 68 57 80 92 12 19 10

The first three rows refer to JIGSAW predictions using different combinations of evidence as input: JIGSAW using human expression evidence, JIGSAW using human and non-human
expression data, and JIGSAW using no expression data. The last two rows show results for the two most accurate prediction systems that do not use expression data, Twinscan and
SGP. (Columns are defined in Table 1.) The highest performance score for each column is highlighted in bold.

Table 3. Prediction performance on ENCODE regions

Gene Exon Nucleotide Missed genes Missed exons Wrong exons
Sens Spec Sens Spec Sens Spec

JIGSAW 43 72 88 93 92 94 3 7 1
JIGSAW (No Ensembl) 42 72 87 93 92 95 3 8 1
Ensembl 56 55 86 88 93 89 2 6 1
cDNA alignments 63 48 88 92 94 91 2 4 2
JIGSAW (No curated genes) 31 54 85 89 89 93 6 9 2
JIGSAW (No expression data) 15 24 73 76 85 85 5 17 7
Twinscan 12 20 70 65 78 86 17 23 12
SGP 11 15 69 67 82 83 5 18 9

The first two rows show JIGSAW performance using human expression evidence as input. JIGSAW (No Ensembl) uses human expression evidence but excludes Ensembl input. The
next two rows show the performance of Ensembl and the cDNA alignments to Swiss-Prot/TrEMBL. JIGSAW (No curated genes) uses no Ensembl and no Swiss-Prot/TrEMBL input
data. The last three rows show methods not using gene expression evidence, JIGSAW (No expression data), Twinscan and SGP, respectively. (Columns are defined in Table 1.) The
highest performance score for each column is highlighted in bold.

To further measure specificity in the alternative splice site predic-
tion programs, we looked at the ENCODE regions and the Havana
manual annotations for genes with start and stop codons, no in-
frame stop codons and consensus splice sites. The set includes 195
loci, with 41% of the loci producing multiple transcripts, for a total
of 330 isoforms. Each transcript was compared against the differ-
ent programs’ predictions so that all isoforms of each gene were
checked. If an exon or nucleotide was correctly identified by any one
of a program’s predicted isoforms, we counted it as a correct pre-
diction, but only once. (Incorrect predictions are likewise counted
only once.) Results are shown in Table 3. As expected, the alternat-
ive isoform predictors (Ensembl and the cDNA alignments derived
from Swiss-Prot/TrEMBL proteins) are able to capture a higher per-
centage of isoforms than JIGSAW. However, both programs predict
many more isoforms, and thus have substantially lower specificity
than JIGSAW. At the exon level, (Exon Sensitivity and Specificity
in Table 3) JIGSAW performs slightly better in both sensitivity and
specificity than Ensembl and the Swiss-Prot/TrEMBL cDNA based
alignments, suggesting that many of the isoforms involve small
changes in the exon structure. JIGSAW’s balance between sensitivity
and specificity remains strong, with 92% of the protein coding nuc-
leotides correctly detected and 72% of the gene predictions exactly
matching a test gene.

The ENCODE Gene Prediction Workshop (EGASP, 2005)
http://genome.imim.es/gencode/workshop2005.html held in April

2005 was a meeting whose primary purpose was to assess the
accuracy of computational human gene predictions in the ENCODE
regions. JIGSAW predictions were submitted for comparison with
dozens of other methods. Results from the workshop support our
findings that JIGSAW is able to create accurate computational pre-
dictions of human genes, and in most cases outperform both ab initio
methods and other ‘combination’ methods that use homology in vari-
ous forms. JIGSAW’s gene predictions for the ENCODE regions are
freely available for download through the UCSC genome browser
(http://genome.ucsc.edu/encode).

4 CONCLUSION
Cataloging the complement of human proteins remains an important
yet elusive scientific milestone. Progress continues as the evidence
available to support predictions increases. Computational methods
need to be able to integrate this new data quickly and effectively. JIG-
SAW demonstrates the benefit of combining a statistical approach
to evidence evaluation with a GHMM based algorithm in order to
integrate multiple, often disagreeing, sources of evidence. JIGSAW
is flexible with respect to types of input, requiring only that each evid-
ence source produce a list of coordinates on a genome sequence. The
program smoothly incorporates DNA and protein sequence align-
ment scores as well as the confidence values produced by some gene
finders. As gene structure evidence continues to grow and improve,
furthermore, JIGSAW’s accuracy should improve as well.
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Finally, JIGSAW’s gene finding accuracy benefits from having
free access to the rich annotation sources inside genome databases.
Public access to genome sequences and annotation not only benefits
biologists working on this data, but also speeds development of better
computational methods.
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