
Understanding SAGE data
San Ming Wang

Center for Functional Genomics, ENH Research Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University,

1001 University Place, Evanston, IL 60201, USA

Review TRENDS in Genetics Vol.23 No.1
Serial analysis of gene expression (SAGE) is a method for
identifying and quantifying transcripts from eukaryotic
genomes. Since its invention, SAGE has been widely
applied to analyzing gene expression in many biological
and medical studies. Vast amounts of SAGE data have
been collected and more than a thousand SAGE-related
studies have been published since the mid-1990s. The
principle of SAGE has been developed to address spe-
cific issues such as determination of normal gene struc-
ture and identification of abnormal genome structural
changes. This review focuses on the general features of
SAGE data, including the specificity of SAGE tags with
respect to their original transcripts, the quantitative
nature of SAGE data for differentially expressed genes,
the reproducibility, the comparability of SAGE with
microarray and the future potential of SAGE. Under-
standing these basic features should aid the proper
interpretation of SAGE data to address biological and
medical questions.

Introduction
Perhaps the best-known way to analyze gene expression is
by microarray. This method relies, however, on knowledge
of the sequence of either the whole genome or individual
cDNAs [i.e. full-length, partial or expressed sequence tags
(ESTs)] for probe design. Serial analysis of gene expression
(SAGE) is a method invented in 1995 for transcriptome
study [1] (Box 1). Similar to microarrays, SAGE provides
quantitative information on gene expression but, unlike
microarrays, SAGE detects unknown transcripts because
it does not require prior knowledge of what is present in
the sample under analysis.

Recently, conventionalSAGEhas beendeveloped further
into different methods, such as LongSAGE, SuperSAGE,
cap analysis of gene expression (CAGE), gene identification
signature (GIS) and others, for specific purposes (Box 2).
SAGE has been widely applied to biological and medical
studies. So far, more than 64 million SAGE tags have been
collected from many species, of which nearly 30 million are
from the humans (Table 1). Understanding SAGE is crucial
for translating the vast amount of data being collected into
biological and medical means. By taking the standard
human14-bpSAGE tags and other types of tag as examples,
here I discuss the basic features of SAGE data.

What information does a typical SAGE data set provide?
A typical SAGE data set collected from a SAGE library
generally provides the following information:
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t collects 50 000 to 100 000 SAGE tags, which
represent 20 000 to 40 000 unique SAGE tags. The
unique SAGE tags provide qualitative information
showing the transcripts detected by SAGE tags; the
copy number of each unique SAGE tag provides
quantitative information showing the abundance of
the transcripts detected by SAGE tags.
(ii) S
everal hundreds of the unique SAGE tags havemore
than 100 copies and several thousand of the unique
SAGE tags have 2–100 copies. The remaining SAGE
tags, which account for 70–80% of the total SAGE
data set, have a single copy.
(iii) T
ypically, 50–70% of the SAGE tags match known
transcripts or genes, whereas 30–50% of SAGE tags
have no match to known transcripts or genes.
How specific is a SAGE tag for its original transcript?
A standard SAGE tag is the 14-bp sequence located
immediately after the last defined restriction site in the
30 part of the detected transcript. This restriction site is
used to release SAGE tags from cDNA templates. The
restriction site that is used the most is the NlaIII site
CATG.

Of the standard 14-bp SAGE tags matched to known
transcripts, the specificity is relatively high in simple
genomes. For example, 96.4% of mappedDrosophila SAGE
tags are unique to known Drosophila transcripts or genes
[2]. The specificity of the tags decreases, however, in more
complicated genomes. For human SAGE tags, a third of the
mapped SAGE tags are shared by different transcripts or
genes [3,4]. Attempts to improve the specificity have been
made using highly qualified transcript sequences as the
references for SAGE tag mapping [2,5]. The increase in
mapping specificity achieved by this approach might be
artificial, however, because the actual composition of the
transcriptome is far more complicated than these highly
qualified sequences.

Attempts have also been made by increasing the tag
length; for example, the LongSAGE approach increases
the length of the SAGE tag from 14 to 21 bp [6], and the
SuperSAGE approach increases the tag length from 14 to
26 bp [7]. Although longer tags indeed increase proportion-
ally both the specificity of a SAGE tag to represent a single
transcript or gene and the specificity of a SAGE tag to map
uniquely in the genome, they do not solve the problem of
specificity completely. In addition, a major drawback of
increasing the tag length is that the mapping rate of Long-
SAGE tags is markedly decreased. For example, of the
632 813 human LongSAGE tags, only 137 333 (22%) can
be mapped to the SAGEmap database (http://www.ncbi.
0.1016/j.tig.2006.11.001
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Box 1. SAGE

Serial analysis of gene expression (SAGE) is a sequencing-based

method for gene expression profiling that facilitates the global and

quantitative characterization of a transcriptome (Figure I). By using a

type II restriction enzyme, BsmFI, as the tag-releasing enzyme, SAGE

extracts 14-bp fragments or ‘tags’ after the last restriction site (mostly

the NlaIII site CATG) in cDNA templates. These tags are ligated together

(‘concatemerization’) into a longer fragment (‘concatemer’), which is

then cloned for DNA sequencing. The tags detected in a sample

represent the parent transcripts, and the frequency of detection of each

tag represents the quantity of the transcript detected.

The gene origin of a SAGE tag is determined by positively

matching the SAGE tag to sequences in a pre-constructed

reference database that contains virtual tags extracted from known

transcript sequences. Negative mapping of a tag to sequences

in the reference database suggests that the SAGE tag has detected

a novel transcript. Sequencing short tags facilitates higher

sensitivity than other technologies for transcript detection. A

detailed description of the different aspects of SAGE is given in

Ref. [45].

Figure I. Schematic representation of SAGE process.
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nlm.nih.gov/SAGE) [5]. This finding is probably related to
the increased probability of incorporating base errors or
single nucleotide polymorphisms in a long tag as compared
with a short tag. In addition, longer tags also increase the
sequencing cost and decrease the throughput capacity of
SAGE [8]. Thus, users need to consider these factors when
choosing the type of tag for their own studies. Although
SAGE tags have lower specificity for their original tran-
scripts than do longer sequences such asESTs or full-length
cDNAs, their advantage is a gain in sensitivity over other
approaches for transcript detection.

How reliable do the genes assigned to SAGE tags by
reference databases?
Unlike longer sequences such as ESTs, the limited length
of the SAGE tag does not enable it to be used directly to
search known transcript sequences for gene identification.
Instead, SAGE relies on a pre-constructed SAGE reference
www.sciencedirect.com
database to determine the gene origin of SAGE tags. The
reference database contains virtual SAGE tags extracted
after the last CATG site in the sequence of known tran-
scripts or genes of a particular species. If a SAGE tag
matches a virtual SAGE tag, the transcript or gene that
contributed the virtual reference tag is assigned to the
SAGE tag.

Several SAGE reference databases, such as SAGEmap
[5] and SAGE Genie (http://cgap.nci.nih.gov/SAGE) [9],
have been constructed and are used widely to determine
the gene origin of SAGE tags. Although the gene origin
can be assigned reliably for many SAGE tags through
these reference databases, the accuracy of the gene origin
determined for some SAGE tags cannot be guaranteed.
For example, one study has estimated that 20% of the
genes assigned to SAGE tags could be incorrect [10]. The
following factors might influence the reliability of reference
databases.

http://www.ncbi.nlm.nih.gov/SAGE
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Box 2. Further developments of SAGE

The standard SAGE technique collects 14-bp tags and has been

widely used in transcriptome studies. The principle of standard

SAGE has been adapted to several new platforms for studying

different topics.

� Generation of longer 30 cDNA from SAGE tags for gene

identification (GLGI) [13] aims to increase the specificity of SAGE

tags. It uses the SAGE tags as the sense primer to extend the

SAGE tags into the 30 end of the cDNA, which is then amplified by

PCR together with a universal antisense primer at the 30 end of

cDNA. Through this process, a SAGE tag is converted into a 30 EST

with up to hundreds of bases.

� LongSAGE [6] aims to increase the specificity of SAGE tags for

transcript identification and for mapping SAGE tags to the

genome. LongSAGE is a modification of standard SAGE. By using

a different type II restriction enzyme, MmeI, as the tag-releasing

enzyme, LongSAGE collects tags of 21 bp. The longer length of

these SAGE tags provides higher specificity for the original

transcripts and increases the unique mapping frequency of the

tags to the genome. LongSAGE has a crucial role in adapting the

SAGE principle to studies of genomic DNA.

� Cap analysis gene expression (CAGE) [21,46] aims to identify

transcriptional initiation sites and promoters. It collects 21-bp

SAGE tags from the 50 ends of cap-purified cDNAs. The

information can be used to identify transcriptional initiation sites

and to locate gene promoters in the genome. CAGE has been used

in mouse and human transcriptome studies [47].

� Gene identification signature (GIS) [22,48] aims to identify the

gene boundary. It collects 20-bp LongSAGE tags from both the 50

and the 30 end of the same transcript to determine the 50 and 30

end of the transcripts detected in the genome. GIS has been

applied to human and mouse transcriptome studies [47,48].

� SuperSAGE [7] aims to increase the specificity of SAGE tags and

to use the tags directly as a microarray probe. By using a type III

restriction endonuclease, EcoP15I, for tag releasing, SuperSAGE

collects 26-bp tags. SuperSAGE tags increase the specificity of

SAGE tags for transcript identification and genome mapping, and

can be applied directly as probes for microarray design [23]. This

approach is particularly valuable for studying gene expression in

the genomes that have no EST or genomic sequence information.

SuperSAGE has been used in plant SAGE studies [23].

� Digital karyotyping [49] aims to analyze genome structure. It

adapts the LongSAGE protocol to collect 21-bp tags from genomic

DNA. Digital karyotyping has been used to identify amplification

and deletion in several types of cancer [49,50].

� Paired-end ditag [51] aims to identify protein-binding sites in the

genome. It uses the GIS principle to collect tags from both ends of

the DNA templates bound by specific proteins isolated through

immunoprecipitation. Paired-end ditag has been applied to the

identification of p53-binding sites in the human genome [51].

44 Review TRENDS in Genetics Vol.23 No.1
(i) B
www.s
iological factors. Transcript isoforms from the same
gene origin, such as alternatively spliced transcripts,
might contribute different SAGE tags, and single
nucleotide polymorphisms located at the SAGE tag
can give rise to different tags for the same gene
transcript from different individuals [11].
(ii) E
xperimental factors. The process of SAGE tag
collection involves many steps. Each step could
introduce experimental artifacts. For example,
incomplete digestion of cDNA templates could result
in the generation of different SAGE tags for the same
transcript.
(iii) T
ranscript redundancy. The transcript sequences
deposited in the expression databases are highly
redundant. To construct a SAGE reference database,
multiple transcripts expressed from the same gene
need to be clustered or grouped. This grouping is
ciencedirect.com
mainly achieved through sequencing alignment
among the transcript sequences or between the
transcript sequences and the genome sequence.
However, this process is by no means easy; for
example, transcripts from different genes might be
clustered together owing to high sequence simila-
rities, whereas different transcripts from the same
gene might be separated into distinct clusters owing
to high sequence differences.
(iv) I
ncomplete SAGE reference databases. Many known
transcript sequences are not included in the SAGE
reference database. For example, of the 7.7 million
human ESTs collected in the Database of ESTs
(dbEST; http://www.ncbi.nlm.nih.gov/dbEST/dbEST_
summary.html), 1.3 million are not included in the
human UniGene Database (UniGene Build 189;
http://www.ncbi.nlm.nih.gov/UniGene), which is the
basis for constructing the SAGEmap reference
database. As discussed above, the use of better
quality sequences, such as well-annotated mRNA
sequences, to construct the reference database can
provide higher specificity for gene mapping with
SAGE tags. Such an approach, however, eliminates
even more known transcripts for mapping. Although
some of the sequences excluded might have poor
quality or lack orientation information, many of them
could represent transcripts that contributed SAGE
tags. As a result, eliminating these sequences might
lead to the classification of experimental SAGE tags
as unknown tags even though their parent transcripts
have been identified.
(v) L
ow-specificity of SAGE tags for their original
transcripts. The same SAGE tag can be shared by
more than one gene [3,4]. Identifying the correct gene
out of multiple genes for a SAGE tag solely on the
basis of the short tag sequence is akin to gambling.
Increasing the tag length improves the specificity
but, as discussed above, also has some side-effects.
In view of these factors, the transcript or gene assigned

should be verified by another approach. Of the limited
methods available, 30 RACE (rapid amplification of cDNA
ends) [12] and GLGI (generation of long cDNA from SAGE
tags for gene identification; Box 2) [13] can convert a SAGE
tag into a 30 EST by extending the tag to the 30 end of
the corresponding cDNA template. The increased length
provides higher specificity to determine the gene origin of
the SAGE tag. To identify the correct gene out of multiple
genes that share the same SAGE tag sequence, a micro-
array-based reference database has also been developed
that uses microarray-detected transcripts as the reference
to annotate SAGE tags collected from the same tissue type
(www.basic.northwestern.edu/SAGE) [4].

What is the origin of unknown SAGE tags?
In a given SAGE data set, up to half of the SAGE tags will
have nomatch to known transcripts or genes [4]. The origin
of these unmapped SAGE tags remains debatable and the
following two explanations have been proposed.

First, the unmapped tags could largely result from an
accumulation of sequencing error products [14,15]. Con-
sidering the many steps involved in SAGE tag collection,

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
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Table 1. Major types of SAGE data holding in NCBI and RIKEN SAGE databases

Organism Library Types of tag (bp) Total

Standard (14) LongSAGE (21) 50 CAGE (21)

Homo sapiens 350 16 138 558

41a 10 165 217 29 921 847

29 3 618 072

Mus musculus 202 12 830 383

145a 11 567 973 28 123 257

112 3 724 901

Caenorhabditis elegans 12 1 464 148 1 928 482

5 464 334

Rattus norvegicus 24 893 339 893 339

Oryza sativa 4 805 823 805 823

Bos taurus 11 609 110 609 110

Drosophila melanogaster 5 489 140 489 140

Magnaporthe grisea 2 484 021 484 021

Zea mays 1 232 948 368 519

Zea mays 1 135 571

Arabidopsis thaliana 7 248 659 248 659

Gallus gallus 2 129 568 156 243

2 26 675

Pinus taeda 2 150 885 150 885

Medicago truncatula 3 131 599 131 599

Bombyx mori 2 126 557 126 557

Meleagris gallopavo 2 95 325 95 325

Sus scrofa 5 84 780 84 780

Drosophila pseudoobscura 2 52 040 52 040

Palaemonetes pugio 4 37 153 37 153

Danio rerio 1 27 486 27 486

Leishmania donovani 1 20 299 20 299

Lentinula edodes 7 19 586 19 586

Total (%) 984 24 438 658 (38) 18 602 302 (29) 21 733 190 (34) 64 774 150 (100)
aFrom Riken (http://fantom3.gsc.riken.jp/); all others are from the NCBI (http://www.ncbi.nlm.nih.gov/projects/geo).
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and in particular the errors introduced by single-pass DNA
sequencing, many SAGE tags will contain base errors and
thus will not be able to map to their known transcripts.
This problem is particularly serious for SAGE tags with
lower copy numbers. Therefore, these unmapped tags
should be eliminated from further analysis.

Second, the unmapped tags could largely comprise true
tags representing unknown low-abundance transcripts
detected by SAGE owing to its high sensitivity [16]. This
explanation is based on the known prevalence of low-
abundance transcripts and on the belief that error tags
exist but in small numbers owing to the fact that many
SAGE data have been collected by the state-of-the-art Big-
Dye sequencing system operated in large genome centers
or genome industries, where sequence quality control such
as Phred20 are routinely used to guarantee the high
quality of sequences. Therefore, the unmapped tags should
be reserved for further study.

Although the first explanation provides high confidence
for the remaining tags, it ignores the existence of unknown
transcripts present in lower abundance. The second expla-
nation provides higher coverage of the transcriptome by
taking advantage of the high sensitivity of SAGE to detect
the total transcriptome in finer detail. It is supported by
data showing that a moderate number of novel transcripts
have been identified from unmapped SAGE tags [16], and
it also fits well with data showing that unknown tran-
scripts are widely present inmanymodel genomes [17–19].
A key to solve the dispute is to distinguish between the true
and the error SAGE tags. The following approaches could
be helpful, although in themselves they are not trivial.
www.sciencedirect.com
(i) U
sing genome mapping as the standard. Although
useful, this approach does not definitively determine
whether tags are true or erroneous. The human
genome sequences (HG17) contain 26 201 271 CATG
sites, which contribute 957 056 unique 14-bp genomic
tags and 19 618 123 unique 21-bp genomic long tags.
The specificity of the 14-bp tag is low: on average,
there are 27 locations per tag in the genome;
therefore, genome mapping cannot be used for the
14-bp SAGE tags. The specificity of the 21-bp genomic
tag is higher: on average, there are 1.3 locations per
tag in the genome. However, the mapping rate of
LongSAGE tags to the genome is low: of the 632 813
LongSAGE tags in the database (http://www.
ncbi.nlm.nih.gov/geo/), only 224 867 (36.5%) can be
perfectly mapped to the genome [4]. In addition to
the issue of SAGE tag sequences, the high degree
of variation between different individual genomes
might also influence SAGE tag mapping. The
reference human genome sequences originated from
a few individual genomes – namely, 66.3% from
one individual, 18.6% from seven individuals and the
remainder from different resources [20] – whereas the
SAGE tags collected in experiments are from various
individuals whose genomes could be substantially
different from those that contributed to the reference
human genome sequences. The lower mapping
frequency also exists for other types of tag. About
40% of mouse 50 CAGE tags, 86% of mouse GIS 50 tags
and 50% of mouse GIS 30 tags cannot be mapped
directly to the mouse genome [21,22]. Therefore,
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positive mapping of a tag to the genome might
indicate that a SAGE tag is real, but negative
mapping is not a reason to reject a SAGE tag as
erroneous.
(ii) U
sing the copy number of SAGE tags as the cut-off.
Typically, single-copy SAGE tags account for 70–80%
of the total number of tags in a given SAGE data set,
and most of these single-copy tags could represent
unknown lower abundance transcripts. Like throwing
the baby out of the bath water, removing single-copy
SAGE tags loses the information for those unknown
transcripts. The remaining higher-copy SAGE tags
aremainly those representingwell-known transcripts
and genes and will provide data similar to those
obtained from microarrays. With this approach, the
high sensitivity of SAGE for detecting unknown
transcripts, of which most are at low abundance, is
diminished.
(iii) U
sing high standards to control sequence quality.
Most SAGE sequences are collected by single-pass
sequencing reactions using an automatic DNA
sequencer. Although standard sequencing quality
controls, such as Phred20, are routinely applied in
sequencing facilities, these controls do not prevent
the errors generated before the sequencing reaction
stage, such as those introduced during PCR. Ideally,
it would be helpful to identify error sequences by
applying the approach used in genome sequencing –
namely, to providemultiple coverage of the genome in
order to exclude error bases. Practically, however, it is
very difficult to use this approach in transcriptome
studies. For a given genome, the size is known and
therefore the fold coverage can be pre-determined; for
most genomes, however, the size of the transcriptome
is unknown and is probably much larger than its
corresponding genome. Thus, the cost required to
provide multiple coverage of the transcriptome would
be prohibitive.
(iv) E
xperimental verification. This could be the best
approach to determine the gene origin of SAGE tags.
However, SAGE tags have only a short length that is
not suitable as a probe for confirmation studies using
hybridization-based approaches (although the Super-
SAGE tag can be an exception owing to its longer 26-
bp length [23]). The SAGE tag is also not suitable for
direct confirmation by PCR because it provides only
one primer and no other sequences for designing the
other primer (although with two tags available from
the same transcript, the GIS 50 ! 30 tags might be
suitable for this approach [22]). In addition, the
number of candidate SAGE tags in a given SAGEdata
set can range from hundreds to thousands; thus, a
high-throughput approach will be needed. However,
few technologies currently exist that are specifically
designed for large-scale SAGE tag confirmation.
Quantitative issues
Does the copy number of SAGE tags reflect the quantity

of the detected transcripts?

The quantitative distribution of a given SAGE data set
shows three classes of transcript: high, intermediate and
ciencedirect.com
low abundance. This pattern fits well with that of RNA
reassociation data [24]. It is unclear, however, whether the
copy number of each SAGE tag accurately reflects the
absolute quantity of the transcripts detected in the sample.
The SAGE process involves many PCR amplifications,
cloning and colony propagations. These treatments could
result in a quantitative bias for different tags. Indeed,
studies show that SAGE data are bias to a high G + C
content [25,26].

Evaluating the degree of bias is difficult when other
technical platforms are used because each platform itself
has an inherent bias. For example, microarrays have
reproducibility problems [27]. We therefore have to accept
with caution the copy number of SAGE tags as a quanti-
tative measure for the transcripts detected. However, the
quantitative issue mainly affects the use of SAGE for
identifying the candidate genes between different samples:
for transcript discovery using SAGE, qualitative rather
than quantitative issues are more important.

How reliable is the differentially expressed gene

identified by SAGE?

One of the principal applications of SAGE is to identify
differentially expressed genes in samples from different
physiological or pathological conditions (see websites
http:cgap.nci.nih.gov/SAGE and http://www.SAGEnet.org/
pubs/index.html). Many statistical methods have been
applied to identify such candidate SAGE tags between
different samples, including Poisson approximation [28],
Bayesian method [29], and the Chi-square test [30]. The
user-friendly IDEG6 website provides major statistical
programs specifically designed for online SAGE data
analysis (http://telethon.bio.unipd.it/bioinfo/IDEG6_form/)
[31]. Each statistical method has its advantages for SAGE
data analysis, but the candidate SAGE tags identified by
different statistical methods for the same SAGE data set
might differ.

To determine which statistical result to believe,
biological factors must be considered. For example, SAGE
tags with high copy numbers are frequently present at
significantly different levels between samples. However,
these SAGE tags represent mainly housekeeping genes
and the statistical significance of their differential expres-
sion between different samples might have less biological
interest. By contrast, SAGE tags representing many func-
tional important genes might differ by marginal amounts
between samples. Whether such statistically insignificant
changes have any biological meaning needs to be consid-
ered. This issue is relevant not only to SAGE data but also
to data collected by other platforms.

How reproducible is SAGE analysis?
Two aspects of reproducibility occur: qualitative
reproducibility, whereby the same tag is detected repeat-
edly in different experiments; and quantitative reproduci-
bility, whereby the same tag is detected at a similar
frequency in different experiments. In comparison to the
progress achieved in applying SAGE to various studies,
limited efforts have been directed towards addressing the
issue of SAGE reproducibility. A possible explanation
might be related to the high cost of sequencing SAGE tags.

http:cgap.nci.nih.gov/SAGE
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Table 2. Reproducibility of SAGE data collected from the same tissue or cell types

Librarya Human Mouse

Colon MCF7 cells Testis Visual cortex

1 GEO ID GSM728 GSM752 GSM34768 GSM34030

Total tag 50 179 60 725 51 879 109 125

Unique tags 17 913 17 213 18 848 37 337

2 GEO ID GSM729 GSM753 GSM45170 GSM34004

Total tag 49 593 60 162 120 136 109 066

Unique tags 16 569 17 821 44 998 35 029

Overlap (%) 5210 (30) 5210 (42) 9021(42) 10 275 (28)

R 0.92 0.94 0.68 0.92

R2 0.84 0.88 0.47 0.84
aThe SAGE libraries were from the NCBI (http://www.ncbi.nlm.nih.gov/geo/).
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There are no published reports showing a
cross-comparison of SAGE data from different laboratories
for the same RNA sample. Several individual laboratories
have tested reproducibility within their own laboratory by
repeating the SAGE process on the same RNA sample
(technical replicates) [32–34]. These studies are relatively
consistent, showing that�30–40% of SAGE tags are repro-
ducibly detected. The SAGE tags that are reproducibly
detected tend to be those with higher copy numbers;
the reproducibility is poor for SAGE tags with low copy
numbers.

Similar results have been found for the comparison of
SAGE tags collected from the same tissue type but not
the same RNA sample (biological replicates; Table 2). It
has been proposed that 300 000 tags must be collected to
Box 3. Comparison of SAGE and microarray for gene expression

Several factors must be considered when comparing SAGE and

microarray data (Table I).

� The different regions of transcripts detected by SAGE and micro-

array. SAGE specifically targets the 30 region of the detected

transcript, and the presence of the restriction site for releasing the

SAGE tag from the template is the determining factor. Microarray

targets various regions of the detected transcript and the base

composition is the top consideration to provide high specificity of

hybridization.

� The different carriers for transcript detection. SAGE collects

sequence information for the detected transcripts and for the copy

number of the quantification; microarray relies on fluorescent

signals for the detected transcripts and on signal intensity for the

quantification.

� The bias present in both platforms. For example, a SAGE tag can

contain sequencing error and quantification bias; microarray can

contain labeling bias and noise signals from nonspecific hybridiza-

tion.

� The inconsistency in both the SAGE and the microarray platforms.

As discussed in the text, the reproducibility of SAGE for low-

abundance transcripts is poor. Similarly, microarray has low

sensitivity for detecting low-abundance transcripts owing to the

low signal-to-noise ratio. The inconsistency of interplatform

comparisons in microarray analyses (e.g. long versus short

oligonucleotides, oligonucleotides versus spotted cDNAs) also

leads to problems [27] when SAGE data are compared with data

from different microarray platforms.

A computational study comparing the data from five

common tissue types collected by Affymetrix oligonucleotide

chip, EST-based cDNA chip and SAGE [33] concluded that

Affymetrix data could be combined with either SAGE or EST–

chip to increase the confidence for the genes detected by each

system. Unifying the data sets from all three systems into one

was not optimal, however, owing to the diversity in each data

set.
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detect transcripts with more than three copies per cell at
92% chance, with the assumption that there are 300 000
transcripts per cell [35]. Most SAGE studies collect
50 000 to 100 000 tags per SAGE library. At this level
of tag collection, the frequency of detecting a particular
SAGE tag will depend on the copy number of that SAGE
tag in the total tag population. SAGE tags with higher
copy numbers have greater chances of being detected; by
contrast, SAGE tags with low copy numbers are detected
more randomly. This explains the low overlapping fre-
quency for low-copy SAGE tags. Increasing the total
number of tags collected is the only way to increase
the overlapping frequency and therefore the reproduci-
bility. Fortunately, most of the functional SAGE studies
aim to identify candidate genes in the system studied at
studies

For the comparison of disease-related data generated by SAGE and

microarray, the situation becomes more complicated. For example,

in our SAGE studies on acute myeloid leukemia, we confirmed only 6

out of 48 disease-related genes detected by different microarray

platforms [52]. In addition to the factors discussed above, the

heterogeneity of the clinical samples used for the studies might also

contribute to the inconsistency. A study has shown that using Gene

Ontology terms for comparison provides a better chance of

identifying the coexpressed genes detected by SAGE, cDNA micro-

array and oligonucleotide microarray [53].

Table I. Comparison of SAGE and microarray for gene
expression studies

Features SAGE Microarray

Detects known

transcripts

Yes Yes

Detects unknown

transcripts

Yes No

Detects alternatively

spliced transcripts

Yes Yes or no

Detects antisense

transcripts

Yes Yes or no

Quantification Absolute

measure

Relative measure

Sensitivity High Moderate

Specificity Moderate High

Reproducibility Good for higher

abundance

transcripts

Good for data

from intra-

platform

comparison

Comparability each

other

Good for higher

abundance

transcripts

Good for higher

abundance

transcripts

Direct cost 5–10 times

higher than

array

5–10 times lower

than SAGE

http://www.ncbi.nlm.nih.gov/geo/
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a statistically significant level. These genes, in most
cases, are represented by high-copy SAGE tags, which
have higher reproducibility. For SAGE tags with lower
copy numbers, SAGE studies are mainly used to discover
new transcripts and genes. For this purpose, the issue of
reproducibility has less concern.

Comparability between SAGE and microarrays
SAGE is an open system that detects both known and
unknown transcripts and genes. Microarray is a closed
system that detects known transcripts and genes. A com-
parison between SAGE and microarray is therefore
restricted to known transcripts and genes, which account
for only about half of the SAGE data.

Many studies have compared the gene expression
profiles obtained with SAGE and microarrays [8,32,36–
42] (Box 3). The general conclusion is that comparison
of the same RNA samples between these two platforms
results in a modest to high correlation for transcripts
at higher abundance. The correlation decreases for
low-abundance transcripts. Both the SAGE and the
microarray platforms have strong and weak points. Data
from the two systems can be complementary to each
other.
Figure 1. Unsaturated detection of transcripts. LongSAGE (21-bp) data sets from hum

GSM31935, GSM31945) were used for this analysis. The SAGE tags were randomly divid

was omitted. The number of unique tags detected in each subset was determined. A

previously detected) were plotted. (a) LongSAGE tags collected from human fetal brain R

tags identified remains at a relatively constant level, indicating that tag identification d
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Can SAGE identify the full contents of the
transcriptome?
Although SAGE is probably the most sensitive method for
detecting transcripts at the genome level, no given SAGE
data sets currently show saturated tag collection in any
tissue sample analyzed. In two human LongSAGE tag sets,
for example, 305 546 and 401 432 LongSAGE tags were
collected in total from human brain and human embryonic
stem (ES) cells, respectively, representing the highest tag
collection among all single tissue or cell types analyzed by
SAGE. Plotting SAGE tag collection versus unique SAGE
tag identification shows that, in both data sets, the first
50 000 or so tags identified contain a higher number of
unique tags. After this point, the number of unique tag
detected remains at a relatively constant level until the
collection of 300 000 tags in brain RNA and 400 000 tags
in ES cell RNA – that is, it decreases from 4000 to 3000
unique tags in brain, and from 3000 to 2000 unique tags in
ES cells, per 10 000 SAGE tags collected (Figure 1). The
higher number of unique tags in brain RNA confirms that
this organ is a transcript-rich tissue, as revealed by EST
studies.

The relatively constant level of unique tag detection in
both SAGE data sets implies that these two studies are far
an fetal brain (305 546) and ES cells (401 432) in the GEO database (NCBI GEO

ed into subsets of 10 000 tags and the final subset containing less than 10 000 tags

fter the first subset, only the unique tags detected in each subset (i.e., those not

NA. (b) LongSAGE tags collected from human ES cell RNA. The number of unique

id not reach saturation.
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from reaching the saturation stage of transcript detection in
the two samples. Furthermore, the transcripts detected by
these two sets of SAGE data seem to reflect, in large part,
the high- and intermediate-abundance transcripts shown
by the RNA reassociation studies [24,43]. The low-abun-
dance transcript population does not seem to have been
detected significantly, because it would have a much lower
proportion of unique tags within the total number of SAGE
tags collected. Because most SAGE studies collect 50 000 to
100 000 tags per sample under the scope of tag collection,
identification of the total transcript content in a given tissue
or cell type is impossible. Interestingly, the 300000–400 000
tags collected from the two above studies match the long-
term assumption that there are 300 000 transcripts per cell
[43]; however, the fact that the unsaturated transcript
detection implies that the actual number of transcripts
present in a cell must be higher than this number.

The unsaturated detection of transcripts is not due to
SAGE itself but to the restricted scale of DNA sequencing.
A given SAGE library probably contains most tags col-
lected from a sample, as judged by the fact that many
single-copy tags do not overlap between different SAGE
libraries (a certain portion of these tags are those from
sequencing error), an indication that the number of the
SAGE tags in the library is much larger than the currently
detected one. Restricted by the cost-efficiency of current
sequencing systems, however, it is difficult to detect com-
prehensively tags with low copy numbers. On the basis of
US $3 for sequencing 700 bp per 50 14-bp tags by the
current Big-Dye sequencing system, the cost for collecting
100 000 14-bp tags per sample would be $6,000 and that
for collecting 1 million 14-bp tags per sample would be
$60 000, which is unaffordable for most academic labora-
tories. New sequencing technologies that markedly
increase the throughput capacity at a low cost should
improve this situation. For example, a recently developed
454 sequencing system can collect 200 000 sequence reads
of up to 100 bp per sequence per run per sample at cost of
about $10 000 [44]. Sequencing a concatenated SAGE
library with the 454 system could detect about seven tags
per sequence or 1.4 million tags per sample. When such
data become available, it will be interesting to see whether
it provides high quality tag sequences and whether we are
still far from, are closer, or have reached the goal of the
exhaustive detection of most transcripts in a cell.

Conclusions and future directions
The transcriptome might turn out to be more complex
than the genome. Each technological platform currently
used to study the transcriptome has its advantages and
disadvantages. For example, hybridization-based microar-
rays provide high-throughput capacity for known but not
unknown transcripts, amplification-based PCR and real-
time PCR provide high sensitivity but low-throughput and
are limited to known transcripts. For sequencing-based
approaches, two main factors dictate the extent of tran-
script detection. One is the length of the tag sequenced
for each transcript, the other is the total number of DNA
sequences collected for the total transcript population.
Full-length cDNA and EST collections provide high
specificity for the transcripts detected but have limited
www.sciencedirect.com
sensitivity for detecting low-abundance transcripts. By
decreasing the length sequenced per transcript to a mini-
mum, SAGE converts the transcriptome complex into the
simplest form. This simplicity enables SAGE to have high
sensitivity albeit low specificity for transcript analysis.
Until sequencing technologies reach a stage that is capable
of covering the full scope of transcriptome and genome at
an affordable cost and with both qualitative and quanti-
tative information, SAGE will continue to have a unique
role in transcriptome and genome studies.
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