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Glossary

Clade: a group of organisms descended from a common evolutionary

ancestor; a branch of the Tree of Life.

Homoplasy: a shared character that was not inherited from a common

evolutionary ancestor but, rather, that arose through convergent evolution.

Phylogeny: the evolutionary history of species relationships, often visualized

as phylogenetic tree (e.g. the Tree of Life).

Taxon: a group of organisms.
DNA barcoding aims to provide an efficient method for
species-level identifications and, as such, will contribute
powerfully to taxonomic and biodiversity research. As
the number of DNA barcode sequences accumulates,
however, these data will also provide a unique ‘horizon-
tal’ genomics perspective with broad implications. For
example, here we compare the goals and methods of
DNA barcoding with those of molecular phylogenetics
and population genetics, and suggest that DNA barcod-
ing can complement current research in these areas by
providing background information that will be helpful in
the selection of taxa for further analyses.

Introduction
Because of advances in sequencing and computational
technologies, DNA sequences have become themajor source
of new information for advancing our understanding of
evolutionary and genetic relationships. The footprints of
comparative sequence analysis are now apparent in almost
all areas of the biological sciences, from development to
epidemiology [1]. However, two branches of biology have
developed the tools and applications employed to assess
biological relationships with DNA sequences: molecular
phylogenetics, and population genetics. These disciplines
focus on different levels of organization. Studies in molecu-
lar phylogenetics typically deal with evolutionary relation-
ships among deeper clades, whereas those in population
genetics target variationwithin and among populations of a
single species. By comparison, DNA barcoding occupies a
middle ground as it seeks comprehensive coverage for
species, but focuses on their delineation rather than their
relationships (Figure 1).

DNA barcoding is based on the premise that a short
standardized sequence can distinguish individuals of a
species because genetic variation between species exceeds
that within species [2]. Pilot projects have now established
the effectiveness of this approach in several large groups of
animals, such as birds [3], fish [4], cowries [5], spiders [6],
and several arrays of Lepidoptera [7–9]. In addition, DNA
barcoding systems are now being established for other
groups of organisms, including plants [10], macroalgae
[11], fungi [12], protists [13] and bacteria [14]. DNA
Corresponding author: Hajibabaei, M. (mhajibab@uoguelph.ca).
Available online 20 February 2007.

www.sciencedirect.com 0168-9525/$ – see front matter � 2007 Elsevier Ltd. All rights reserve
barcoding datasets are essentially composed of short
DNA sequences from several individuals of a large number
of species (typically five to ten individuals per species, but
these numbers will increase in the future) (Figure 1).

Here, we discuss the role of DNA barcodes in advancing
the taxonomic enterprise and its potential to provide a
contextual framework for both building phylogenies and
for population genetics. In particular, we argue that bar-
code results can be of high value in aiding the selection of
species for more detailed analysis, and demonstrate that
DNA barcoding can broaden our understanding of both
phylogenetic signal and population-level variation.

The DNA barcoding workflow
Species identification through barcoding is usually
achieved by the retrieval of a short DNA sequence – the
‘barcode’ – from a standard part of the genome (i.e. a
specific gene region) from the specimen under investi-
gation. The barcode sequence from each unknown speci-
men is then compared with a library of reference barcode
sequences derived from individuals of known identity
(Figure 2). A specimen is identified if its sequence closely
matches one in the barcode library. Otherwise, the new
record can lead to a novel barcode sequence for a given
species (i.e. a new haplotype or geographical variant), or it
can suggest the existence of a newly encountered species
(see below).

Various gene regions have been employed for
species-level biosystematics (Table 1); however, DNA bar-
coding advocates the adoption of a ‘global standard’, and a
650-base fragment of the 50 end of the mitochondrial gene
cytochrome c oxidase I (COI, cox1) [2] has gained desig-
nation as the barcode region for animals. This fragment
Taxonomy: the science of classification. Biological taxonomy creates a

hierarchical classification of biological taxa, usually reflecting evolutionary

relationships.
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Figure 1. DNA barcodes lie within the gray area between phylogenetics and population genetics. This diagram demonstrates the position of DNA barcode data relative to

both population genetics and phylogenetics data. Each small square represents an individual. Different colors are used to represent different species and within-species

variation is shown by varying shades of color.

Figure 2. Major components of the Barcode of Life projects and their contribution to taxonomy, reconstruction of molecular phylogenies and population genetics

investigations. This diagram shows how DNA barcoding libraries can support the conventional taxonomic workflow by high-throughput identification of unknown

specimens and by helping to draw attention to new and cryptic species. Barcode sequences and collateral data for each specimen are accessible through a global online

data base (e.g. BOLD: http://www.barcodinglife.org). This information can be useful in other contexts, such as phylogenetics (Tree of Life projects) and population-level

studies. In addition, archival DNA and tissue specimens collected in barcoding projects provide an excellent resource for other investigations. Butterfly images are taken

from the database of Daniel Janzen and Winnie Hallwachs (http://janzen.sas.upenn.edu/).
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Table 1. Common species-level molecular markers

Genea Genomic location Number of sequences

Animals Plants Protists Fungi

COI-barcodeb Mitochondria 195 777 520 1931 410

16S-rDNA Mitochondria 41 381 221 2059 285

cytb Mitochondria 88 324 165 1920 1084

ITS1-rDNA Nucleus 12 175 57 693 68 839 56 675

ITS2-rDNA Nucleus 13 923 58 065 67 332 56 349

18S-rDNA Nucleus 21 063 17 121 32 290 33 327

rbcL Plastid NAc 30 663 37 328 NA
aGene abbreviations: COI, cytochrome c oxidase I; cytb, cytochrome b; ITS, internal transcribed spacer; rbcL, large subunit of ribulose 1,5-bisphosphate carboxylase/

oxygenase.
bCOI-barcode statistics are retrieved from Barcode of Life Data systems (http://www.barcodinglife.org). Statistics for other loci are retrieved from GenBank.
cNA, not applicable.
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size has been selected so that a reliable sequence read can
be obtained by a single sequence pass in conventional cycle-
sequencing platforms. Shorter fragments of COI have also
been shown to be effective for the identification of speci-
mens with degraded DNA, however, where a 650-base
sequence is not easily obtainable [15]. In addition, the
usability and robustness of COI in a standard high-
throughput barcoding analysis have been extensively
assessed [16].

Other researchers have suggested that alternate loci
might also serve as a basis for species identification. For
example, 18S rDNA has been used for the identification of
soil nematodes and other small organisms in an approach
known as ‘DNA taxonomy’ [17]. This approach differs from
DNA barcoding in that it does not aim to link the genetic
entities recognised through sequence analysis with Lin-
naean species. As such, it is most useful for groups of
organisms that lack detailed taxonomic systems. Alternate
markers have also been used where COI sequences have
not been produced robustly or are shown to be divergent
within species [18] or as further molecular evidence in the
discovery of cryptic species [19]. Moreover, in some groups
such as plants, COI (and mitochondrial genomes at large)
do not evolve rapidly enough to provide species-level resol-
ution, and alternative markers are being pursued [10,20].

Several studies have demonstrated the effectiveness of
DNA barcoding in different animal groups [2–4,7,8,19,21].
These projects have shown that >95% of species possess
unique COI barcode sequences; thus species-level identi-
fications are regularly attained. The earliest barcode stu-
dies received some criticism, mainly owing to their limited
taxonomic and geographical breadth [22]; however, more
recent studies have addressed these issues by targeting
species-rich groups (i.e. those containing many closely
related species) in tropical settings [8], and by comprehen-
sive analyses of all the species in a given taxonomic
assemblage [5]. Momentum has further been aided by
establishment of the Consortium for the Barcode of Life
(CBOL, http://barcoding.si.edu) – an international alliance
of research organizations that support the development of
DNA barcoding as an international standard for species
identification [23] – and by development of the Barcode of
Life Data Systems (http://www.barcodinglife.org) – a global
online data management system for DNA barcodes [24].

Barcoding projects typically involve gathering speci-
mens of a given taxonomic group (identified by conven-
tional taxonomic methods such as morphology; see below),
cataloging them together with collateral data such as
www.sciencedirect.com
photographs and locality information, and assembling
the barcode library (i.e. a 650-base segment of the COI
gene) [16]. The analysis of DNA barcoding data is usually
performed by a clustering method, such as distance-based
neighbor-joining (NJ) [25], and by evaluating genetic dis-
tances within and between species (e.g. [8]). More complex
methodologies for data analysis are under development,
including statistical tests for species assignment [26,27],
and character-based clustering methods [28].

DNA barcoding and taxonomy
Although its role in identifying specimens to a species level
is an important aid for taxonomic workflow (Figure 2),
barcoding is no replacement for comprehensive taxonomic
analysis. For example,whenanunknownspecimendoesnot
return a close match to existing records in the barcode
library, the barcode sequence does not qualify the unknown
specimen for designation as a new species. Instead, such
specimens are flagged for thorough taxonomic analysis.
When viewed in the context of the traditional taxonomic
framework – which is usually much slower than barcoding
analysis – this flagging of atypical specimens has much
potential to aid species discovery [8]. In poorly studied
taxonomic groups, DNA barcoding can be performed before
conventional taxonomic work to quickly sort specimens into
genetically divergent groups. For example, Smith et al. [29]
used DNA barcoding to rapidly assess the biodiversity of
ants in Madagascar and it is now a routine element of a
large-scale biodiversity inventory on these organisms.

DNA barcoding has also been used in well-studied
groups such as Lepidoptera [9]. For example, barcoding
is now used routinely to understand the biodiversity of the
caterpillar fauna in northwestern Costa Rica. This project,
which was started over 25 years ago by Janzen, Hallwachs
and colleagues [9,30,31], has, over the past three years,
employed barcoding to create a reference sequence library
for more than 25 000 specimens representing >2000
species of moths and butterflies and their parasitoids
[7–9,19]. This library is now used to speed up the sorting
and identification of specimens in concert with the
traditional taxonomic workflow.

Although the task of identifying and describing new
species is ultimately achieved through comprehensive
taxonomic work, DNA barcodes can significantly facilitate
this process. The conventional taxonomic workflow, which
usually requires the collection of morphological and eco-
logical data, can vary for different taxonomic assemblages
(i.e. taxonomic identification of birds and fish require
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different methods and skills), whereas barcode analysis
can be applied in a more or less standardized way across
large domains of life (i.e. all animal taxa).

DNA barcoding and molecular phylogenetics
The molecular phylogenetics workflow

The incorporation of sequence data has revolutionized
phylogenetics over the past two decades [32] and an
increasing number of large-scale projects are underway
to resolve different branches of the Tree of Life (http://
tolweb.org). A typical molecular phylogenetics project
involves a primary decision in relation to the target group
for analysis (e.g. family), the assembly of representative
taxa, the acquisition of sequence information, and the
construction of phylogenetic trees by using optimality
criteria such as Maximum Likelihood, Maximum Parsi-
mony, or Bayesian analysis. Although the details of these
procedures have been discussed extensively elsewhere
[33], it is important to emphasize that care must be exer-
cised in the selection of both loci and representative taxa to
optimize the recovery of a strongly supported phylogenetic
tree. Until recently, gene selection was largely restricted to
easy-to-sequence and universal targets such as ribosomal
genes. However, recent technological advances mean that
much more strategic thinking is possible. Consequently,
most recent phylogenetic analyses use sequence infor-
mation from multiple loci (covering several kilobases),
often from different genomic compartments (i.e. nucleus,
mitochondrion and chloroplast) to enhance resolution at
different taxonomic levels [34] and to avoid gene-specific
biases [35]. With the advance of whole-genome sequencing
projects, some researchers have even advocated the use of
entire genomic sequences for phylogenetic inference [36].

Another important consideration, taxon sampling, has
received rather less attention than the choice of loci. It is
generally recognised that increasing the number of taxa
aids recovery of the correct phylogeny (see Glossary) by
reducing branch lengths and homoplasy (see Glossary),
both factors that can produce misleading phylogenies
[37,38]. In fact, some argue that adding additional taxa
is more valuable than adding more genes to improve the
resolution of a phylogeny [39,40]. Although there is no
doubt that adding more taxa is helpful, it is also important
to select these taxa with care, given that computational
factors can limit the number of taxa that can be analyzed.
Because of this, researchers have relied on heuristics and
simplified analytical methods when dealing with phyloge-
nies with large number of taxa (i.e. hundreds of species).
The examination of multiple individuals from a single
species, or the analysis of large sets of closely allied species,
remains uncommon.

From barcodes to phylogenies

While barcode libraries have similarities to molecular
phylogenetic data (both are sequence information from
assemblages of species), DNA barcodes do not usually have
sufficient phylogenetic signal to resolve evolutionary
relationships, especially at deeper levels [41]. Although
barcode sequences have been analyzed mainly by using
phylogenetic tree reconstruction methods such as NJ,
these barcode-based trees should not be interpreted as
www.sciencedirect.com
phylogenetic trees [41]. DNA barcoding projects can aid
the construction of phylogenies by aiding the selection of
taxa (Figures 1,2), however. Because DNA barcodes are
used both to identify species and to draw attention to
overlooked and new species, they can help identify candi-
date exemplar taxa for a comprehensive phylogenetic
study (Figure 1). Barcode of Life projects create a perfect
taxonomic sampling environment for conducting phyloge-
netic studies on different branches of the Tree of Life
(Figure 2); and, as mentioned earlier, this sampling has
been shown to be a key factor in obtaining a robust phy-
logeny [39,40]. Consequently, phylogenies that are con-
structed on top of barcode libraries, in a given taxonomic
group, are less likely to be influenced by insufficient taxon
sampling. Additionally, barcoding aids in pinpointing and
subsequent replacement of taxa with attributes – such as
exceptionally elevated rates of evolution or nucleotide
compositional biases [33] – that can mislead the recovery
of phylogenetic trees.

Barcode sequence data can also provide a shared
genomic cornerstone for the variable repertoire of genes
that can be used to build the phylogenetic tree. It can be
used as a link between the deeper branches of the tree to its
shallow, species-level branches.

DNA barcoding and population genetics
The population genetics workflow

Traditional analytical approaches, such as patterns of
allozyme or restriction enzyme polymorphisms, have now
largely been replaced by sequence-based analyses. How-
ever, the selection of an appropriate marker system for a
population genetics survey requires careful consideration of
issues such as sensitivity for the questions being asked and
practicalmeasures for obtaining the information (i.e. ease of
amplification by PCR). Because mitochondrial DNA mar-
kers are haploid and uniparentally inherited, they are
frequent targets for analysis and have made a particularly
strong contribution to population-level studies [42]. How-
ever, multigene (multilocus) analyses have recently gained
credibility because they are less sensitive to specific gene
genealogies that might not correctly reflect population
history [43]. More recently, with the availability of high-
throughput sequencing technology, fine-scale sequence
analysis methods, such as single-nucleotide polymorphism
(SNP), have given a new dimension to population-level
studies [44]. Large-scale analysis of these sequence-based
markers are now underway in the framework of projects
such as HapMap (http://www.hapmap.org), which aims to
identify the genetic variation associated with human dis-
eases [45].

Although a vast number of genetic markers have been
used to study population structure, the number of species
studied is far fewer. Typical population genetics studies
examine variation within populations of a single species,
and this sort of information has been successfully applied
to geographical studies of populations, to investigate issues
such as migration and genetic drift. However, few taxo-
nomic groups have been studied extensively with DNA
sequence data. For example, a GenBank search suggests
that human, chimpanzee and a few other model organisms
such as mouse and Drosophila melanogaster account for

http://tolweb.org/
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more than half of all sequence-based population genetics
studies (data not shown).

From barcodes to population analysis

Although the typical sequence information gathered for
DNA barcoding is not sufficient to rigorously address
population-level questions [22,46], it can provide an early
insight into the patterning of genomic diversity within a
species. Because barcoding typically targets a large num-
ber of species, it can be a powerful tool to facilitate com-
parative studies of genetic diversity in different species or
ecological settings (Figure 2). Models of population
genetics, such as coalescent-based models, have been pro-
posed for the assignment of individuals to species in DNA
barcode analysis [26,27]. It would be interesting to inves-
tigate further the usefulness of barcode data (and the effect
of sample size) in the study of genetic diversity of species.
Conventional measures such as haplotype diversity or
Watterson’s theta [47] can potentially provide useful infor-
mation in this regard. Moreover, with the accumulation of
large amount of barcode sequences and collateral infor-
mation such as ecological and geographical information, it
is important to investigate the type of questions that can be
addressed through barcode data. For example, habitat
continuity and genetic structure in species, within a taxo-
nomic assemblage or geographical region, can potentially
be studied by expanding the sampling of both individuals
and genetic markers.

The strategic value of DNA and tissue archiving
DNA barcoding requires the assembly of tissue samples
and the subsequent isolation and archiving of genomic
DNA. These archived samples can act as useful resource
for phylogenetics, population genetics and phylogeo-
graphic studies. Sampling, vouchering and DNA isolation
constitute a substantial cost for any molecular study.
Recent technologies such as whole-genome amplification
[48], or sequencing by synthesis [49], which employ small
amounts of genetic material for analysis, can potentially
facilitate even broader genomics applications for the
genetic material gathered in DNA barcode studies.

Concluding remarks
In summary, DNA barcoding is poised to contribute to
taxonomic research and to population genetics and phylo-
genetics. In taxonomy, DNA barcoding can be used for
routine identification of specimens; and it can also flag
atypical specimens for comprehensive taxonomic investi-
gation. In phylogenetic studies, DNA barcoding can be a
starting point for optimal selection of taxa, and barcode
sequences can be added to the sequence dataset for phy-
logenetic analysis. In population genetics investigations,
DNA barcodes can provide a first signal of the extent and
nature of population divergences and will facilitate com-
parative studies of population diversity in many species.

On the basis of recent developments, we expect that the
barcode databases will grow rapidly – some facilities are
already processing >100 000 specimens per year. Con-
sequently, the InternationalNucleotide SequenceDatabase
(INSD: GenBank, EMBL, and DDBJ) has adopted a unique
keyword identifier (BARCODE) to recognise standard
www.sciencedirect.com
barcode sequences specified by the scientific community
(i.e. CBOL).

The introduction of DNA barcoding is a natural addition
to the post-genomic era, in which whole-genome sequen-
cing has provided a vast amount of sequence information
from a limited number of species. DNA barcodes can help
expand our knowledge by exploring many more species
rapidly and inexpensively. The results obtained from DNA
barcoding studies can then help us identify species that are
good targets for more detailed genetic analyses.
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