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The short length of human housekeeping genes, com-

pared with tissue-specific genes, has been attributed to

selection for economy in transcription and translation.

In this article, I show that the non-transcribed inter-

genic spacer around housekeeping genes is also short,

which suggests that short housekeeping genes are a

result of local genome organization. Tissue-specific

genes are longer than housekeeping genes because

they have more functional domains, which is an indi-

cation of their more-complex protein architecture.

Recently, several papers have reported that highly and
broadly expressed (i.e. expressed in many tissues) human
genes are shorter, both in their intronic and coding
sequences, than genes that are expressed in a tissue-
specific fashion [1–3]. Because transcription and (particu-
larly) translation are energetically costly, this shortness
was interpreted as a result of selection for economy [1–3].
However, in Saccharomyces cerevisiae (and probably some
other unicellular organisms) the highly expressed genes
have longer introns compared with genes that have a lower
expression level [4], contradicting this interpretation. In
addition, a negative correlation between the gene
expression level and the length of coding sequence (CDS)
was not observed in Arabidopsis thaliana and Drosophila
melanogaster, whereas positive correlation was found in
Caenorhabditis elegans [5]. In the genomes of warm-
blooded vertebrates, genes and intergenic sequences
located in the GC-rich regions (called heavy isochores)
are shorter than sequences located in the GC-poor regions
(light isochores) [6–8]. Genes with a high level and
breadth of expression (housekeeping genes) are on average
more GC-rich [9–11]. The GC-rich sequences tend to be
located in the central, open chromatin of the interphase
nuclei of warm-blooded vertebrates, whereas the GC-poor
sequences are located in the peripheral, more compact
chromatin [12].

All these facts suggest another interpretation of the
correlation between gene length and the level and breadth
of expression in the human genome. They indicate that the
length and GC content of intronic and intergenic
sequences might be optimized for chromatin-mediated
suppression and more-complex regulation of tissue-
specific genes compared with housekeeping genes,

resulting in a special epigenetic organization of the
genome. (The suppression of tissue-specific genes is
obviously not pertinent to yeast and other unicellular
organisms.) This problem is also directly relevant to the
long-standing ‘C-value (genome size) paradox’. This
paradox, after discovery that a significant part of
eukaryotic genome consists of non-coding DNA (constitut-
ing intronic and intergenic sequences), can be redefined as
whether a part of this non-coding DNA is related to
organismal complexity. The greater length of CDS in the
tissue-specific genes might not be a result of a weaker
selection for economy but a consequence of the functional
and regulatory complexity of tissue-specific proteins. For
instance, when the proteome of multicellular eukaryotes
(and particularly vertebrates, judging by the human
genome) were compared with unicellular organisms,
there was an expansion of families of multidomain
proteins, which are generally longer and might be involved
in multicellular organization (i.e. they are proteins
involved in extracellular interactions) [8,13]. It is reason-
able to suggest that these longer, multidomain proteins are
mostly tissue-specific proteins. In this article, I build a case
for the ‘genomic design’ interpretation.

Data acquisition

The data on the expression levels of human genes in
normal tissues that were obtained from oligonucleotide
microarray experiments (Affymetrix U95A; http://www.
affymetrix.com/) were extracted from the Gene Expression
Atlas (http://expression.gnf.org/cgi-bin/index.cgi) [14].
Only probes that represented characterized genes with
links to the RefSeq database were used (http://www.ncbi.
nlm.nih.gov/RefSeq/index.html), and signals from dupli-
cate probes on the same chip and replicates representing
the same tissue were averaged. This gave a total of 7708
genes and 32 tissues. A gene was regarded as expressed if
its signal level exceeded a conservative threshold of 200
arbitrary units [14]. I found that there is a strong
correlation (Spearman r ¼ 0:89; P , 1028) between the
expression breadth (number of tissues where a given gene
is expressed) and the expression level (averaged over all
tissues studied). The intronic and intergenic sequences
(both upstream and downstream) were found for 6874 and
5104 genes, respectively. In cases of alternative-splicing
variants the longest CDS was used. The average lengthCorresponding author: Alexander E. Vinogradov (aevin@mail.cytspb.rssi.ru).
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and GC content of upstream- and downstream-intergenic
sequences were taken as the corresponding values of the
local intergenic spacer for a given gene. [For .95% of the
tested genes, the untranslated regions (UTRs) are known
and therefore included in the genic sequence. It is possible
that some unknown UTRs might occur in the intergenic
sequence but they should constitute only a minor fraction
of this sequence and thus, can not affect the results
significantly.] For those genes that have links to the
SwissProt database (http://us.expasy.org/sprot/), the num-
ber and size of the functional domains in the corresponding
proteins were analyzed using the SwissPfam database [15]
(5579 proteins were found).

For comparative purposes, the genomes of the nema-
tode worm (C. elegans) and the fly (D. melanogaster) were
studied. The data on nematode gene expression [exper-
iments were conducted using oligonucleotide microarrays
(Affymetrix) and gene expression in 12 stages of embryonic
development was examined] were from Ref. [16]. The
absolute calls (i.e. absence or presence) of gene expression
provided by the authors were used. The intronic and
intergenic sequences were found for 6248 genes. The data
on Drosophila gene expression were taken from Ref. [17];
the authors present the results of experiments using
oligonucleotide microarrays (Affymetrix) and examined
gene expression at 34 categories (stages) of embryonic
development and at 53 categories of experimental con-
ditions in adult flies. Because the most significant changes
in gene expression were observed between the embryonic
and adult categories [17], I composed the groups of
categories for analysis taking this into account. Because
the authors did not provide absolute calls, I processed their
raw data similar to the human dataset in the Gene
Expression Atlas (http://expression.gnf.org/cgi-bin/index.
cgi) [14] and used the same 200-unit threshold for
decisions on gene expression. Intronic and intergenic
sequences were found for 11 653 genes.

Housekeeping genes are short – but so are the intergenic

spacers

Both the CDS and intronic sequence (intervening
sequence; IVS) of broadly expressed human genes are
shorter than those in tissue-specific genes (Figure 1a). A
similar picture was observed with the UTR length (not
shown). However, the intergenic spacers (which are
presumably not transcribed) show the same, or an even
more regular, trend (Figure 1a). If gene length is expressed
as a ratio to local intergenic spacer length, the negative
correlation between gene length and expression breadth
changes direction in the case of CDS (and UTRs; not
shown) and disappears in the case of IVS (Figure 1b).
Similarly, the negative correlation between gene length
and expression level (averaged over all tissues) changes
sign in the case of CDS and UTR lengths and disappears in
the case of IVS length, if they are expressed as ratios to the
local intergenic spacer length (Table 1). This indicates that
the length of intronic sequence is proportional to the
length of intergenic sequence (which is reminiscent of the
‘among-genomic’ proportionality between the amounts of
intragenic and intergenic non-coding DNA [18–20]). It
seems unlikely that the shortness of intergenic spacers

around the housekeeping genes is a secondary trait
(byproduct) caused by the widespread expression of
these genes. (Transposable elements might integrate
more frequently in the intergenic sequences that are
located in the decondensed chromatin neighboring the
transcribed genes, thereby increasing the length of their
intergenic spacers.)

Figure 1. The structural genomic parameters of genes expressed in a different

number of human tissues. (a) The lengths of coding (red), intronic (green) and

intergenic (blue) sequences. (b) The ratio of coding (red) and intronic (green)

sequence length to the local intergenic sequence length. The mean values with

LSD (least significant differences) intervals are shown (ANOVA and Kruskal-Wallis;

for intronic to intergenic sequence ratio P , 0:05 but there was inconsistent direc-

tion of differences, for all other cases P , 1028).
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Table 1. Correlation between structural genomic parameters

and gene expression level averaged over all tissues studied (all

parameters are log-transformed)a

Length parameter Correlation

coefficient

CDS 2 0.14 (P , 1026)

UTRs 2 0.11 (P , 1026)

Intronic sequence 2 0.22 (P , 1026)

Intergenic spacer 2 0.16 (P , 1026)

CDS and intergenic spacer 0.09 (P , 1025)

UTRs and intergenic spacer 0.04 (P , 0.01)

Intronic and intergenic spacer Not significant

Ratio of total non-coding to CDS 2 0.14 (P , 1026)

Percent of protein length covered by domains Not significant

aAbbreviations: CDS, coding sequence; UTRs, untranslated regions.
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Gene nests

It was long argued that introns (and intergenic sequences)
might be necessary for correct chromatin structure [21,22].
The nucleotide-sequence signatures indicate that the
nucleosome-formation sites are stronger in introns com-
pared with those in exons [23–26]. It was shown in several
cases that after removing the introns experimentally,
genes lose the ability to form nucleosomes [27,28].
Sequences involved in gene-specific regulation are some-
times found in introns [29]. The intergenic DNA is also
important for gene regulation: enhancers, silencers and
insulators of human tissue-specific genes are located in the
intergenic sequences upstream and downstream of a gene
and can work over distances of .100 kb [29]. It was also
shown that intergenic sequences participate in the
chromatin-mediated ‘sectorial’ repression that involves
blocks of genes [30–33]. A greater amount of intragenic
and intergenic non-coding DNA, in which the tissue-
specific genes are embedded (‘gene nest’), might facilitate
suppression of gene activity in most tissues by the shear
bulk of condensed chromatin and might also contain more
gene-specific regulatory elements.

It is noteworthy that among strictly tissue-specific
genes (i.e. those expressed in none or one tissue of the
dataset), there is a weak positive correlation between
expression level and length parameters (CDS, not sig-
nificant; UTRs, r ¼ 0:08; P , 0:01; intronic sequences,
r ¼ 0:11; P , 1024; intergenic spacer, r ¼ 0:08; P , 0:01;
ratio of non-coding to coding DNA, r ¼ 0:11; P , 1024).
This does not support the economy explanation. From the
epigenetic standpoint of chromatin-mediated gene sup-
pression, the strictly tissue-specific genes with a higher
expression should be more strongly suppressed in other
tissues (where they are not to be expressed), which can
explain a greater amount of non-coding DNA surrounding
them. This suggestion is supported by the negative
correlation between expression level and GC content
in the strictly tissue-specific genes (CDS, r ¼ 20:23;
P , 1026; third codon position, r ¼ 20:25; P , 1026;

intronic sequences, r ¼ 20:21; P , 1026; intergenic
sequences, r ¼ 20:16; P , 1025). By contrast, for the
whole dataset, there is a positive correlation between the
level and breadth of gene expression and GC content [11].
Accordingtotheepigenetichypothesisput forwardhere, this
is because, in general, the highly and broadly expressed
genes should be located in the more open chromatin.

GC content

If GC content is added as covariate into multifactor
ANOVA or general linear model (GLM), the correlation
between the ratio of non-coding to coding DNA lengths and
the breadth of gene expression disappears (Figure 2). It is
noteworthy that the GC content of both the intronic and
the intergenic sequences was used for the correlation to
disappear completely (Figure 2). Both parameters of GC
content participate in the model independently (at least
partially), each are highly significant ðP , 1024Þ and have
a negative sign (i.e. the higher the GC content, the lower
the ratio of non-coding to CDS lengths). This fact suggests
that the GC content of intron and intergenic sequences
taken together is a better reflection of the isochore

affiliation of a given gene (i.e. the regional effect) or that
the local variation of GC content among intronic and
intergenic sequences is also an important property of the
‘gene nest’. In any case, it is clear that the length and the
GC content of non-coding DNA are closely intertwined in
their effects on gene expression.

Tissue-specific proteins are longer but not because of

‘junk’

The length of CDS is special because protein sequences
should be under stronger selective pressure for function
than the more dispensable non-coding DNA of introns. But
translation is more costly than transcription [34] and
presents an addition to transcriptional cost, with each
mRNA molecule being translated many times. Therefore,
the suggestion that economy selection on the proteins of
broadly expressed genes would shorten their CDS is not
unreasonable. However, instead of the coding regions of
housekeeping genes being shorter for reasons of economy,
another explanation is possible: tissue-specific proteins
might be longer because of their functional and regulatory
complexity. Were the tissue-specific proteins under a
relaxed selection for economy, functionally significant
regions would cover a lower percent of their length. This
is true: functional domains cover a higher percent of length
in housekeeping proteins than in tissue-specific proteins
(Figure 3a). However, this difference is not sufficient
(,3%) to explain the ,1.5-fold increase in the average
length of CDS in tissue-specific genes (Figure 1a). At the
same time, the increase in the number of domains
correlates with the increase in CDS length: it is also
,1.5-fold (Figure 3b). The same trend is observed if only
the unique domains are counted (Figure 3b), which shows
that there is not just a repetition of domains but that the
diversity of domains is also higher in tissue-specific
proteins. There is no correlation between the average
expression level and the percentage of protein length
covered by domains (Table 1), which does not support the

Figure 2. The ratio of non-coding (i.e. intronic plus the local intergenic sequence)

to coding sequence lengths in genes expressed in a different number of human tis-

sues. The mean values with LSD (least significant differences) intervals are shown:

no correction (black circles; ANOVA and Kruskal-Wallis, P , 1028); corrected in

multifactor ANOVA or general linear model (GLM) for intronic GC content (purple

triangles; ANOVA and GLM, P , 1023); corrected both for intronic and intergenic

GC content (yellow squares; ANOVA and GLM, P . 0:6). (If the untranslated

regions are included in the non-coding DNA, the results are similar.)
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economy hypothesis. Although domains in the house-
keeping proteins appear to be slightly shorter, this
difference is not statistically significant (Figure 3c).
These facts show that the higher length of tissue-specific
proteins is due to their higher number of (diverse)
domains, which is an indication of their more-complex
functional architectures.

Multicellular invertebrates

In the nematode, the CDS is longer in broadly expressed
genes (Figure 4a); this was shown previously using
transcript abundances in the EST database (http://www.
ncbi.nlm.nih.gov/dbEST/) [5]. This observation does not
concur with the ‘economy’ hypothesis. The IVS are shorter
in broadly expressed genes (Figure 4a), which confirms the
previous observation [1], using a more recent experimental
dataset [16]. However, the intergenic spacers of broadly
expressed genes show even a more regular and stronger
length reduction (Figure 4a). As a consequence, the ratio of
non-coding to coding DNA lengths (‘gene nest’ proportion)
in the nematode genome negatively correlates with the
breadth of gene expression (Figure 4b), similar to the
picture observed in the human genome.

In Drosophila, the CDSs are shorter in the most broadly
expressed (strictly housekeeping) genes (Figure 5a),
whereas the IVS show a general trend for reduction,
which is not consistent (Figure 5a). The intergenic spacers
show a regular stepwise reduction and seem to approach a
plateau in the strictly housekeeping genes (Figure 5a).
This plateau is probably related to the fact that Drosophila
has one of the smallest genomes among insects. Therefore,
the intergenic distances in this genome might approach

Figure 3. The functional domains in proteins expressed in a different number of

human tissues (according to the SwissProt and Pfam databases). The mean values

with LSD (least significant differences) intervals are shown. (a) The percentage of

protein length that is covered by domains (ANOVA and Kruskal-Wallis, P , 0:01).

(b) The number of domains (black circles) and number of unique domains (purple

triangles) in a protein (ANOVA and Kruskal-Wallis, in both cases P , 1028). (c) The

average domain length (ANOVA and Kruskal-Wallis, P . 0:1).
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Figure 4. The structural genomic parameters of genes expressed in the nematode.

(a) The lengths of coding (red), intronic (green) and intergenic (blue) sequences

and (b) the ratio of non-coding (intronic plus local intergenic sequence) to coding

sequence lengths in genes expressed at a different number of time points during

Caenorhabditis elegans embryonic development. The mean values with LSD (least

significant differences) intervals are shown (ANOVA and Kruskal-Wallis, in all

cases P , 1028).

TRENDS in Genetics 

Number of time points

S
eq

eu
nc

e 
le

ng
th

 (
bp

, l
og

)

1 2–6 7–11 12

Number of time points

1 2–6 7–11 12

(a)

(b)

2.7

2.8

2.9

3.0

3.1

3.2

3.3

R
at

io
 o

f n
on

co
di

ng
 to

 c
od

in
g

D
N

A
 le

ng
th

 (
lo

g)

0.18

0.23

0.28

0.33

0.38

0.43

0.48

Opinion TRENDS in Genetics Vol.20 No.5 May 2004 251

www.sciencedirect.com

http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.sciencedirect.com


their lower limit for a given organization level. This
plateau, together with the fact that strictly housekeeping
proteins of Drosophila are short, compared with less
broadly expressed proteins (Figure 5a), can explain some
elevation of the ratio of non-coding to CDS lengths in
strictly housekeeping genes (Figure 5b).

Thus, although CDS and IVS of these multicellular
invertebrates do not always change consistently with an
increase of gene-expression breadth, in the genomes of
Drosophila and C. elegans, the intergenic spacers show a
regular, stepwise length reduction, which is in agreement
with the ‘genomic design’ interpretation.

Concluding remarks

In summary, the previously reported negative correlation
between gene length and expression breadth in the human
genome disappears, if gene length is expressed as a ratio to
the length of the local intergenic spacer, which indicates
the within-genomic proportionality between the amounts

of intragenic and intergenic non-coding DNA in regard to
gene expression. As a result, the ratio of non-coding
(introns plus intergenic spacer) to CDS length (‘gene nest’
proportion) negatively correlates with expression breadth.
In addition, human tissue-specific proteins contain a
higher number of functional domains than broadly
expressed proteins. These facts undermine the ‘economy’
explanation and provide support for the ‘genomic design’
interpretation of the negative correlation between gene
length and expression breadth. The greater amount of
intragenic and intergenic non-coding DNA, in which the
tissue-specific genes are embedded, might be related to
chromatin-mediated suppression and more-complex regu-
lation of tissue-specific genes, whereas the greater length
of their CDS is probably due to more-complex functional
architectures of tissue-specific proteins.

The ‘economy’ hypothesis implicitly assumes the neu-
tralist (permissive) interpretation of the accumulation of
non-coding DNA in the eukaryotic genome: the incessantly
transcribed genes are supposed to ‘slim down’ (selection
condition), whereas those that work less intensively ‘get
fat’ (permissive condition). Therefore, the rejection of the
‘economy’ hypothesis suggests an adaptive interpretation
of the evolution of non-coding DNA. It does not mean that
all non-coding DNA in the human genome is ‘epigenetic’
(i.e. related to the suppression of non-housekeeping
genes). It could be, partly, a result of the activity of
transposable elements – behaving as selfish darwinian
units – although their propagation is not always adaptive
for the organism [35–37]. It could also have a role of
nuclear ‘skeleton’, regulating the nuclear-cytoplasmic
ratio and cell size [38] or perform a ‘buffering’ function
(i.e. an energy-independent attenuation of fluctuations in
the intracellular medium) [39]. The ‘buffering’ function
might be intertwined with the ‘epigenetic’ function. It was
shown that a few seconds after cell membrane damage, the
chromatin of vertebrate cells undergoes drastic deconden-
sation [40]. The process is governed, at least in part, by a
difference in the extracellular versus intracellular solute
composition, the variation of which represents a perma-
nent challenge to the chromatin-condensation state [40].
Therefore, the higher ‘gene nest’ proportion of tissue-
specific genes might secure their suppression because a
bulk of condensed chromatin mass surrounds the gene,
which should buffer the surges of chromatin decondensa-
tion caused by fluctuations of solute composition, thereby
reducing transcriptional noise.
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