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ABSTRACT

Exhaustive gene identification is a fundamental
goal in all metagenomics projects. However, most
metagenomic sequences are unassembled anony-
mous fragments, and conventional gene-finding
methods cannot be applied. We have developed
a prokaryotic gene-finding program, MetaGene,
which utilizes di-codon frequencies estimated by
the GC content of a given sequence with other
various measures. MetaGene can predict a whole
range of prokaryotic genes based on the anony-
mous genomic sequences of a few hundred bases,
with a sensitivity of 95% and a specificity of 90% for
artificial shotgun sequences (700 bp fragments
from 12 species). MetaGene has two sets of codon
frequency interpolations, one for bacteria and
one for archaea, and automatically selects the
proper set for a given sequence using the domain
classification method we propose. The domain
classification works properly, correctly assigning
domain information to more than 90% of the artificial
shotgun sequences. Applied to the Sargasso Sea
dataset, MetaGene predicted almost all of the
annotated genes and a notable number of novel
genes. MetaGene can be applied to wide variety of
metagenomic projects and expands the utility of
metagenomics.

INTRODUCTION

Microorganisms form complex communities in natural
environments and are responsible for most of the ecological
cycles that shape those environments. Therefore, identifying
all community members and genes in an environment is
fundamental to obtaining a perspective on the ecological
systems. However, only a fraction of the living microbes
can be isolated in culture. The estimations based on 16S ribo-
somal RNA suggest that 99% of microbial species cannot be
easily cultivated (1,2). Whole-genome shotgun sequencing of

environmental-pooled DNA draws attention as a powerful
method for revealing genomic sequences from various organ-
isms in natural environments without isolation and cultivation
of individual species. This metagenomic approach has been
applied to various environmental samples including an acid
mine biofilm (3), the Sargasso Sea (4), Minnesota farm soil
(5), whale falls (5) and deep sea sediments (6). In exceptional
cases, analyses of Pleistocene cave bears (7) and mammoth
DNA (8) are interesting applications of metagenomics to
paleogenomics. While the metagenomic approach allows us
to capture representative DNA samples from many diverse
organisms, many unidentified sequences are produced at the
same time. Additionally, many sequence reads remain as
unassembled one-pass sequences because of the variety of
sizes of environmental genomes and their abundance. Indeed,
half of the reads for the Sargasso Sea dataset and all of the
reads for the Minnesota soil data were unassembled
sequences of roughly 700 bp. Gene-finding is a fundamental
goal in virtually all metagenomics projects, but the only
realistic alternative is similarity searches of the sequence
database or the metagenome itself (9). The sensitivity of
similarity search depends strongly on the availability of the
relevant sequences in the database, and many novel genes
of interest, which are the key element in metagenomics, are
missed. To overcome this problem and exhaustively extract
genes in environmental genomes, we have developed the
MetaGene gene-finding program, which is designed to predict
genes from fragmented genomic sequences.

Computational gene-finding from genomic DNA
sequences has a long history (10–12), and a number of
prokaryotic gene-finding tools have been developed and
widely applied to the annotation of the microbial genomes.
Although a variety of algorithms, including the hidden
Markov model (HMM), are employed in gene-finding tools
(13–27), most of the algorithms require a sufficient number
of experimentally identified gene sequences from which to
learn the parameters for individual species. Non-supervised
training procedures eliminate that problem and can be applied
to an anonymous genome (18–22) that is either a complete
genomic sequence or a large portion of the sequence that
contains an adequate number of genes. However, most envi-
ronmental genomic sequences are fragmented anonymous
sequences that contain one or two partial genes, so almost
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all of these algorithms are inapplicable. Only a non-
supervised procedure that employs a heuristically derived
model (23) works well for finding genes in such fragmented
anonymous sequences. In this method, codon frequencies are
approximated by the GC content of a given sequence.
Because strong correlation is observed between the codon
frequencies and the GC content of the genomic sequence
(23,28,29), the estimated models sufficiently represent the
original codon usage of the genome. We extended the method
to estimate di-codon frequencies and achieve a higher predic-
tion accuracy than results from using mono-codon frequen-
cies. In addition to the codon frequencies, other measures,
such as the frequency distribution of open reading frame
(ORF) lengths, the distance from leftmost start codons, and
the distances between neighboring ORFs, are integrated in
MetaGene. These additional measures remarkably improve
the prediction accuracy, especially with respect to in specifi-
city. Here, we report the results of a performance test of
MetaGene applied to sequences of various lengths and
GC% and its application to the contig sequences of the
Sargasso Sea dataset as a case study.

MATERIALS AND METHODS

Materials

We used the complete genomic sequences and the annota-
tions of coding regions of 143 microorganisms that are
available in GenBank. To avoid overfitting to well-studied
genera and to form an accurate estimation of the prediction
performance, one species per genus was selected for our
study. A total of 116 bacterial and 15 archaeal genomes
(Supplementary Table 1) were used to obtain the statistical
values for model construction; the remaining 9 bacterial
and 3 archaeal genomes (Supplementary Table 2) were
used to evaluate the prediction performance. These genomic
sequences were randomly split into fixed-length fragments
(cardinally, 700 bp, the average length of the shotgun
reads) that represent 1· genome for each species. The frag-
ments were used as artificial shotgun sequences for the
assessment. In these fragments, uninformative miniscule par-
tial genes (less than 60 bp) were excluded from the annota-
tions. The prediction performance was estimated by using
the annotations as correct genes. The ratios of true-positives
relative to all annotated genes (sensitivity) and to all predic-
ted genes (specificity) were calculated. Both exactly match-
ing predictions and partially matching predictions with
correct reading frames were counted as true-positives. The
contig sequences and annotations of the Sargasso Sea dataset
were also obtained from the Venter Institute (http://www.
venterinstitute.org/sargasso/) and used for the case study.

Architecture of MetaGene

MetaGene predicts genes in two stages. In the first stage, all
possible ORFs are extracted from a given sequence and are
scored by their base compositions and lengths. In this
paper, an ORF is defined as a sequence of codons starting
from a start codon and stopping at a stop codon. Partial
ORFs are also extracted when they are located on the ends
of the given sequence or are the entire sequence. In the

second stage, an optimal (high-scored) combination of
ORFs is calculated using the scores of orientations and dis-
tances of neighboring ORFs in addition to the scores for
the ORFs themselves. This two-stage approach also allows
us to predict overlapping genes with appropriate scores.

The MetaGene scoring scheme is based on a stochastic
approach. Log-odds ratios are used for scoring throughout
our algorithm. The frequency of an event observed in protein-
coding ORFs is divided by the observed frequency in random
ORFs, and a base-two logarithm of the ratio is used as the
score for the event. The statistics used in MetaGene include
di-codon frequencies, ORF length distributions, distance dis-
tributions from an annotated start codon to the leftmost start
codon, and frequencies of orientations and orientation-
dependent distances of neighboring ORFs. Details of the
scoring scheme can be seen in the Supplementary Data
section.

Estimation of the stochastic models for a given sequence

Codon frequency interpolation. Microbial genomes consist
mainly of protein-coding regions, and the nucleotide freq-
uencies in the three codon positions are strongly associated
with those in the entire genome. In addition, Besemer and
Borodovsky (23) reported that some amino acid residue
frequencies are linearly related to the GC content of the
genome. Since genes of certain species have almost the
same codon usage or are classified into a few classes of
codon usage, the usage is reflected in the local GC content
of the genome. In this study, mono-codon and di-codon
frequencies for the start, internal and stop codons are directly
estimated by the GC% of a given sequence by using logistic
regression analysis.

For the start codons, the proportions of ATG, GTG and
TTG are estimated by the GC%. There is no strong correla-
tion between the proportions of correct start codons and the
GC% of the genomes, and ATG is used as the major start
codon in most species. However, the proportions of incorrect
start codons are strongly associated with the GC%, thus log-
odds scores of the start codons vary according to the GC%.
For the internal and stop codons, the conditional probability
of a codon A, given a previous codon B, denoted P(AjB),
is estimated by using logistic regression analysis. We found
that the di-codon frequencies are also related to the GC%
like mono-codon frequencies and the relations can be suc-
cessfully represented by a sigmoid function (see Supplemen-
tary Data). At the same time, we found that bacteria and
archaea have slightly different trends in the relations between
the di-codon frequencies (e.g. xxxATA and xxxGAG) and the
GC%, which means the regression formulas derived from
bacterial (or archaeal) codon frequencies are not suitable
for predicting archaeal (or bacterial) genes. Actually, scores
of protein-coding ORFs are degraded when codon frequen-
cies of the wrong domain are used for the scoring (Supple-
mentary Figure. S2). To overcome this limitation, we
formulated a domain classification method for bacteria and
archaea. For the domain classification, two sets of regression
formulas for bacterial and archaeal codon frequencies are pre-
pared, and both of them are applied to the scoring of ORFs in
a given sequence. The definitive scores of the optimal paths
of ORFs are independently calculated and compared, and
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the higher one is selected as the output for the given
sequence. The domain classification method is just based
on the differences of codon frequencies. However, some
bacterial (archaeal) species have codon frequencies that are
similar to archaeal (bacterial) genes. As a result, 5 of 116 bac-
terial (Anaplasma marginale, Aquifex aeolicus, Pelodictyon
luteolum, Thermoanaerobacter tengcongensis and Thermo-
toga maritima) and 1 of 15 archaeal (Methanosphaera stadt-
manae) genomes in the training data were misclassified by
our domain classification method. The accuracies of gene-
finding for the incorrectly classified genomes were still very
high, because codon frequencies fitted to the species’ genes
were used. The aim of the domain classification is to improve
gene-finding accuracy by using proper codon frequencies; our
method achieves that purpose.

Length distribution of ORFs

The ORF length is an important measure for distinguishing
protein-coding ORFs from random ORFs. The average length
of protein-coding (annotated) ORFs is about 950 bp, and the
length distribution does not vary much among species
(Figure 1a). Only slight decreases are observed in the freq-
uencies of short ORFs from the high GC% genomes. On
the other hand, the average lengths of random ORFs vary
greatly according to the GC content of the genomes
(Figure 1b). The average length of random ORFs (longer
than 60 bp) in the low GC% genomes (<30%) is about
120 bp, while the average in the high GC% genomes
(>60%) is about 300 bp. The difference in the lengths arises
from the differences in the frequencies of incorrect start/stop
codons in the genomes. We estimated the length distribution

 
 

 

 

 

      
 

 

      

 
  

Figure 1. Length distributions of (a) annotated ORFs and (b) random ORFs. ORFs are classified by the GC% of their genomes, and then the length distributions
of each class are calculated. Distributions of distances between (c) leftmost start codons and annotated start codons and (d) leftmost start codons and incorrect
start codons. Zero means the leftmost start codons are used as the start codons of the ORFs. (e) Orientation-dependent distributions of distances between
neighboring ORFs. (f) The background distributions. Negative values mean overlapping of ORFs.
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of random ORFs for a given sequence by linear interpolation
using the distributions shown in Figure 1b. We used the
distributions to calculate the log-odds scores of the ORF
lengths for all extracted ORFs and added them to the
codon-based scores. If an extracted ORF having a length l
is a partial ORF, its true length will be greater than l. To
appropriately evaluate the partial ORFs, which are the major-
ity in metagenomic data, the upper probabilities derived from
the distributions are used.

Distance distribution from the correct start codon to the
leftmost start codon

It is known that the leftmost start codons are not always used
as translation starts. The ratio of leftmost start codons to
annotated start codons also varies greatly with the GC content
of the genomes. Figure 1c and d show the distributions of the
distance between the correct (or assumed) start codons
and the leftmost ones. These GC%-dependent distributions
arise from the incorrect start/stop codon frequencies like the
random ORF lengths. However, a comparison between the
distributions of the correct and the assumed (incorrect) start
codons indicates that the protein-coding ORFs prefer the left-
most start codons to the others and that the appearance of
upstream incorrect start codons is not common. Interestingly,
the log-odds score of the leftmost start codon is larger in the
high GC% genomes than in the low GC% genomes (data not
shown), although the frequency of the leftmost start codon is
lower in the high GC% genomes. Unfortunately, the anno-
tated start codons are not always correct (22,30), and the
obtained distributions may not be very accurate. The rates
of the leftmost ‘real’ start codon may be especially lower
in GC-rich genomes. On the other hand, these distributions
show significant correlation between the translation start
sites and the genome GC%, which means the annotations
are not random, and the obtained distributions contain useful
information inherent to the annotation data. The distributions
for a given sequence are estimated by linear interpolation
using these distributions, and the log-odds scores are
added to the ORF scores as in the case of the ORF length
distribution.

Orientation and distance of neighboring ORFs

Prokaryotic genes are frequently arranged in tandem in the
genome because of the operon structures. In the genomes
studied here, about 70% of neighboring genes are tandem,
and the remaining genes are arranged head-to-head and tail-
to-tail in equal proportion. The orientations of neighboring
genes influence their distance distributions (Figure 1e). The
tandem genes tend to be compactly arranged, and the mode
of the distribution is �4 bp (overlaps of length four:
ATGA, GTGA and TTGA). This packed arrangement is
suitable for operon transcription for a single RNA. The
distribution also indicates the existence of a RBS (ribosome
binding site) at around 7 bp upstream of the start codons.
The head-to-head genes prefer more distant arrangements
because they have promoters in their upstream regions and
avoid overlaps with coding regions. The tail-to-tail genes
have a moderate but specific distribution compared to the
others, probably indicating the existence of transcription
stop signals. Such biased distributions can be used to evaluate

an optimal sequence of ORFs in a given sequence. Because
about half of the sequence reads (700 bp in length) have
two partial genes per read, the information of neighboring
ORFs is helpful in exacting gene prediction in environmental
genomic sequences. We therefore integrated scores of the
orientations and distances of neighboring ORFs into the
calculation of a high-scoring path of ORFs. When the previ-
ous or next gene does not appear in a sequence, the upper
probability derived from the distance distributions is used
according to the gene orientation.

The definition of the background distribution is difficult in
the intergenic regions. If the distances from one to all
possible ORFs are used, a uniform distribution of extremely
low frequency (depending on the genome size) is obtained.
This problem can be avoided by limiting the range of ORF
distances, but the background frequency depends on the
range setting. In this study, the number of random ORFs
between neighboring protein-coding ORFs was counted,
and the distribution of the number was used to determine
the neighbors. Although the number of random ORFs
depends on the GC% of the genome, the distance distribution
derived from the number is independent of the GC%. This is
obvious because the occurrence rate of random ORFs
depends on the GC%. We decided to use the upper quartile
of the distribution, which means using the distances from
one to the first 10 candidate ORFs to derive the background
distribution. The obtained distributions are shown in
Figure 1f.

RESULTS AND DISCUSSION

Testing on complete genomes

Although our main target is raw sequence reads and relatively
short contigs, we tested the prediction performance of
MetaGene on anonymized complete genomic sequences to
assess the validity of our method. MetaGene just estimates
codon frequencies and length (distance) distributions by the
GC% of a given sequence, and does not use any other non-
supervised procedure adapted to complete (long) genome
using statistics from a sufficient number of candidate ORFs
in the tested genome. In addition, all genomic sequences
and annotations of the tested organisms were completely
excluded from the training data for the codon frequency
interpolation by the GC%. Despite this implementation, pre-
diction accuracies of MetaGene for the complete genomes
were extremely high (Table 1) and comparable to those of
GeneMark.hmm, which learned its parameters using individ-
ual genomes and annotations (supervised learning). The pre-
diction performance of MetaGene was independent of the GC
content of the genomes, and the whole range of genes is pre-
cisely predicted. Only the sensitivity of Chlorobium tepidum
and the specificity of Wolbachia were remarkably low both
in MetaGene and GeneMark.hmm. Some archaea-like and
eukaryote-like genes exist in the C.tepidum genome and
degraded the sensitivity of the prediction because their
codon biases differ from those of bacteria. This problem
was partly improved in the MetaGene prediction for the
fragmented sequences by using the domain classification
method (see next section). In the Wolbachia genome, the
annotated gene content is significantly lower than in the
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other microorganisms, and the length distribution of anno-
tated genes is much different from that in the others. The
length distribution of predicted genes was also different
from that of the others, and a large number of small genes
(about 200 bp) were predicted by MetaGene (and Gene
Mark.hmm). This probably means that there are many pseu-
dogenes in the genome or that sequencing (or assembling)
errors occurred.

For the complete genomes, our domain classification
method worked perfectly, and the predictions for all species

were performed with regression formulas of the appropriate
domain. Examples of score distributions of ORFs derived
from the archaeal and the bacterial set of regression formulas
are shown in Figure 2. The separation performances varied
significantly with the species and the selected set of regres-
sion formulas. The scores for correct genes showed especially
remarkable improvement from the use of the appropriate
set of the regression formulas. This means the background
frequencies for bacteria and archaea are almost the same,
while the codon frequencies are significantly different.

Table 1. Gene prediction accuracies for nine bacterial and three archaeal complete genomes

Organisms GC% Known genes MetaGene GeneMark.hmm
Sn (%) (exact) Sp (%) Sn (%) (exact) Sp (%)

Archaea
M.jannaschii DSM 2661 31.4 1724 98.4 (69.9) 96.1 98.9 (63.1) 95.4
A.fulgidus DSM 4304 48.6 2407 96.2 (73.5) 94.8 96.9 (72.0) 94.0
N.pharaonis DSM 2160 63.4 2661 96.9 (80.7) 97.7 95.8 (84.8) 98.8

Bacteria
Buchnera aphidicola str. APS 26.3 563 99.6 (88.5) 94.6 99.8 (88.6) 95.6
Prochlorococcus marinus str. MIT 9312 31.2 1809 95.9 (86.6) 94.9 97.1 (87.7) 95.7
Wolbachia endosymbiont strain TRS 34.2 805 95.2 (76.5) 75.9 98.9 (85.7) 75.0
Helicobacter pylori J99 39.2 1477 96.3 (74.2) 96.3 98.3 (88.2) 95.1
Bacillus subtilis subsp. subtilis str. 168 43.5 4102 94.0 (61.8) 96.9 97.9 (86.2) 95.3
E.coli K12 50.8 4236 94.7 (72.3) 97.3 97.2 (74.3) 96.8
C.tepidum TLS 56.5 2252 82.4 (59.9) 95.1 84.1 (58.1) 93.4
Corynebacterium jeikeium K411 61.4 2137 94.6 (70.0) 97.0 95.5 (72.3) 97.7
Burkholderia pseudomallei K96243 chr.1 67.7 3398 97.4 (71.9) 93.9 96.6 (61.0) 95.0
B.pseudomallei K96243 chr.2 68.5 2328 97.7 (70.3) 91.5 95.9 (62.1) 89.4

Average 95.3 (73.5) 94.0 96.4 (75.7) 93.6

Sn: sensitivity, Sp: specificity, exact: only an exact match is treated as correct. Results of GeneMark.hmm were obtained using the web interface of the GeneMark
program (version 2.4) with same length threshold as MetaGene. The only result of GeneMark.hmm for P.marinuswas obtained from the RefSeq database of NCBI.

 
 

    

 
 

(a) (b)

Figure 2. Distributions of log-odds scores of ORFs calculated with (a) archaeal models and (b) bacterial models. Score distributions of the annotated genes
and false positives for Archaeoglobus fulgidus and Escherichia coli are indicated.
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Testing on artificial shotgun sequences

To assess the prediction performance of MetaGene on small
fragments of anonymous genomic sequences, the complete
genomic sequences of 12 organisms were randomly split
into 700 bp fragments of 1· genome coverage. About 1.4
genes per fragment were annotated in the artificial shotgun
sequences, and 92% of the annotated genes were partial
genes. Here, miniscule partial genes, which are less than
60 bp in length, had been excluded from the annotations of
the fragments. Table 2 shows the accuracies of MetaGene
on the artificial shotgun sequences. The sensitivities for the
fragments were high enough and equivalent to those for the
complete genomes, while the specificities were significantly
degraded. The result shows the difficulty of distinguishing
fragmented short genes from background noise. Despite the
degradation of the specificity, the absolute values were still
high enough, and the performance of MetaGene on the shot-
gun sequences is sufficient for practical use in metagenomic
gene-finding. Interestingly, the sensitivities based on the
exact match criterion were higher than those on the complete
genomes because many ORFs for the fragments lack their 50

ends, including start codons.
In about 90% of the fragmented sequences, the correct

domain (i.e. the same domain as the original genome) was
selected to predict genes (Table 2). Interestingly, more anno-
tated genes were successfully detected for the fragmented
genomic sequences of C.tepidum TLS than for the complete
genomic sequences by using the archaeal codon frequencies
as well as the bacterial codon frequencies. In the C.tepidum
genome, the existence of many archaea-like proteins (about
12% of the annotated proteins) was reported (31). Many of
these archaea-like genes, which may result from lateral
gene transfer, were missed in the prediction for the complete
genome because the bacterial codon frequencies were
selected. For the fragmented sequences, all genes, including
these archaea-like genes, were correctly predicted by
using the proper codon frequencies for each fragment. As a
result, the sensitivity increased significantly despite the
short lengths of the input sequences. In the prediction for

the two archaeal genomes, Methanocaldococcus jannaschii
and Natronomonas pharaonis, 25–30% of the fragments
were misclassified, which means the bacterial codon frequen-
cies were applied to them. However, the prediction accuracies
on these genomes were adequately high. This result suggests
that these species have a considerable number of genes that
are similar to bacterial genes. In fact, it is known that
M.jannaschii shares the majority of genes related to energy
production, cell division and metabolism with bacteria (32).

To examine the effectiveness of the measures employed by
MetaGene to precisely predict genes on the fragmented
sequences, three additional prediction models were cons-
tructed and applied to the artificial shotgun sequences
(Table 3). One model used all of the ORF scores (the ORF
model), such as the codon frequencies, the ORF length distri-
butions and the distance distributions of start codons, but did
not use the orientation and distance distributions of neighbor-
ing ORFs. Another model used only the codon frequencies
(di-codon model), and no other measures were integrated.
The other (mono-codon model) was an alternative the
di-codon model that substituted mono-codon frequencies for
di-codon frequencies. Surprisingly, the di-codon model was
sufficiently accurate, suggesting that the GC%-dependent
di-codon models were the predominant gene-finding mea-
sures in MetaGene. The mono-codon model also showed
high sensitivities, but the specificities were low. In the predic-
tions of the ORF model, both sensitivities and specificities
were improved. Most of the annotated genes were partial in
the artificial shotgun sequences, and statistically-accurate
scoring for such partial genes worked well. In addition, the
length/distance scores facilitated an exact prediction of
ORFs. In the original MetaGene, the orientation and
orientation-dependent distance distributions helped to predict
an optimal gene set in a genomic sequence, and significantly
improved the specificities of the predictions. All of the
measures certainly improved the prediction performance,
especially the specificity. By integrating all of the measures,
MetaGene achieves reliable gene prediction for small
fragments of genomic sequences.

Raw shotgun sequences vary in length, although the
average is about 700 bp. We applied MetaGene to various
fixed-length fragments ranging from 100 to 1000 bases
(1· genome) and inspected the change of the prediction per-
formance with the length of the input sequence (Figure 3).
The prediction accuracies naturally decreased along with
the shortening of the input sequences. However, MetaGene
retained relatively high accuracies on smaller fragments,
and extreme degradation of accuracy was observed only for
the 100 bp fragments. Generally, most raw sequence reads
are larger than 500–600 bp, which is to say that MetaGene
can predict genes on the metagenomic data with high
reliability.

Table 2. Prediction accuracies of MetaGene on artificial shotgun sequences

(700 bp long)

Organisms Sensitivity
(%) (exact)

Specificity
(%)

Correct
domain
(%)

Archaea
M.jannaschii DSM 2661 97.8 (82.4) 94.1 70.2
A.fulgidus DSM 4304 95.8 (81.5) 93.7 99.3
N.pharaonis DSM 2160 97.1 (86.2) 93.0 80.8

Bacteria
B.aphidicola str. APS 98.2 (90.9) 92.7 98.6
P.marinus str. MIT 9312 95.5 (87.6) 92.7 90.9
W.endosymbiont strain TRS 93.1 (80.8) 76.0 72.8
H.pylori J99 92.6 (77.7) 92.7 95.1
B.subtilis subsp. subtilis str. 168 92.3 (73.5) 92.5 92.9
E.coli K12 95.3 (81.2) 93.2 97.9
C.tepidum TLS 88.1 (73.2) 89.6 78.4
C.jeikeium K411 94.0 (78.5) 91.4 85.8
B.pseudomallei K96243 chr.1 96.8 (81.2) 87.9 93.3
B.pseudomallei K96243 chr.2 96.6 (80.5) 85.7 93.0

Average 94.9 (81.2) 90.4 88.4

Table 3. Effectiveness of the measures integrated in MetaGene

Prediction models Sensitivity (exact) Specificity

MetaGene (original) 94.9 (81.2) 90.4
ORF model 94.8 (79.7) 88.3
Di-codon model 94.0 (70.0) 86.7
Mono-codon model 93.8 (67.7) 84.3
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Another problem of raw data are the occurrence of
sequence errors. Shotgun sequences include more errors
than the complete genomes because of the one-pass status
of the shotgun sequences. Most low-quality nucleotides con-
centrate near the ends of the sequences, and such nucleotides
are ordinarily cut out from the sequences (3,5). As a result,
the shotgun sequences have a relatively high average of qual-
ity values, which are assigned to nucleotides by a base-call
program (the average is usually more than 40, or less than
one error per 10 000 bp). We tested the effect of sequence
errors on gene-finding using artificial sequences with variable
error rates (Figure 4). Position-specific error rates were
obtained from actual trace data (sequence + quality files),
and the average was modulated. Degradation of the predic-
tion performance was sufficiently low, suggesting reliable
predictions can be performed by MetaGene on real
metagenomic sequences.

Application to metagenomic sequences

We applied MetaGene to the contig sequences in the Sargasso
Sea dataset. The dataset consists of about 0.8 million contigs
having an average length of about 1 kb (about 820 Mb in

total) and having about one million genes annotated. The
annotated genes were determined mainly by their similarity
to the known bacterial genes. Some hypothetical genes
were also determined based on the presence of conserved
ORFs (4). For the contig sequences, about 1.4 million
genes were predicted by MetaGene. Almost all annotated
genes (96% of known genes and 92% of hypothetical genes)
appeared in our predictions, and about 0.4 million genes
were additionally predicted. These genes are strong candi-
dates for novel genes from uncultured microorganisms,
and they were five times more numerous than the hypotheti-
cal genes in the annotation. This means homology-based
methods miss on notable number (>30%) of genes, and thus
reduce the advantage of the metagenomic approach. The
numbers of estimated genes disaggregated by length are
shown in Figure 5. The MetaGene predictions were almost
identical to the theoretical numbers, while those of the anno-
tated genes were much lower in a wide range of lengths. Not
only short ORFs but also relatively long ones were captured
by MetaGene as novel genes. Many short ORFs exist in the
Sargasso data, and MetaGene also predicted many short
ORFs. However, these distributions suggest that most of the
false positives may be accumulated in these short ORFs. The
number of ORFs having 900 bases was lower than the theo-
retical number. The Sargasso sequences have a peak at
around 900 bp, and many partial ORFs whose lengths are
identical to the input sequences (900 bp) were predicted in
theory. Because of the sequencing errors, some of such
long ORFs may be broken by false stop codons and/or
frame shifts in the real sequence data.

In the Sargasso Sea dataset, about 90% of the genes were
predicted by the bacterial model, and only a fraction was
classified into archaeal genes. Although this value does not
directly reflect the abundances of bacterial and archaeal
species, the result is consistent with the estimate based on
16S rRNA sequences. Our domain classification method
was designed to precisely predict all genes and not to cor-
rectly estimate the domain of the given sequence. However,
we believe that the additional domain information is useful
in obtaining an overview of the microbial community in the
environmental sample.

Figure 3. Sensitivity and specificity of MetaGene for the sets of fixed-length
artificial shotgun sequences. The average values for 12 species are indicated.

Figure 4. Effect of sequence errors on gene-finding. Nucleotides of the
artificial sequences (700 bp) were changed according to position-specific
error rates derived from actual data. The percentages are plotted against the
averages of the position-specific error rates.

 

Figure 5. Length distributions of ORFs predicted by various methods. The
theoretical distribution was calculated by using gene densities and the length
distributions of complete ORFs.
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Availability of MetaGene

MetaGene has a very simple architecture and does not require a
long calculation time. It took only about 15 min to test all of the
contigs of the Sargasso Sea dataset on a single core of a Pentium
D (3.4 GHz)/Linux system. The software implemented in C++
can be downloaded from http://metagene.cb.k.u-tokyo.ac.jp/.
AWeb interface to the software is also available at the web site.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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