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Abstract 

Background:  The 99% of bacteria in the environment that are recalcitrant to culturing have 

spurred the development of metagenomics, a culture-independent approach to sample and 

characterize microbial genomes.  Massive datasets of metagenomic sequences have been 

accumulated, but analysis of these sequences has focused primarily on the descriptive 

comparison of the relative abundance of proteins that belong to specific functional categories.  

More robust statistical methods are needed to make inferences from metagenomic data.  In this 

study, we developed and applied a suite of tools to describe and compare the richness, 

membership, and structure of microbial communities using peptide fragment sequences 

extracted from metagenomic sequence data.   

 

Results:  Application of these tools to acid mine drainage, soil, and whale fall metagenomic 

sequence collections revealed groups of peptide fragments with a relatively high abundance 

and no known function.  When combined with analysis of 16S rRNA gene fragments from the 

same communities these tools enabled us to demonstrate that although there was no overlap in 

the types of 16S rRNA gene sequence observed, there was a core collection of operational 

protein families that was shared among the three environments.  

 

Conclusions:  The results of comparisons between the three habitats were surprising 

considering the relatively low overlap of membership and the distinctively different 

characteristics of the three habitats.  These tools will facilitate the use of metagenomics to 

pursue statistically sound genome-based ecological analyses.
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Background 

Metagenomics, the culture-independent isolation and characterization of DNA from 

uncultured microorganisms [1], has facilitated the analysis of the functional biodiversity harbored 

in the large reservoir of uncultured bacteria and archaea [2-4].  Although early metagenomic 

studies identified individual genes or activities of interest, recent advances in genome 

sequencing technologies have made obtaining a complete metagenomic sequence more 

tractable.  Sequence-based approaches combined with functional expression approaches have 

the potential to identify novel genes important for industrial and ecological applications.  

Sequence-based approaches have recently been applied to DNA obtained from viruses [5, 6], 

seawater [7-10], wastewater [11, 12], sediment [13], sponges [14], acid mine drainage [15], 

marine worms [16], human gut [17], soil [18], and decomposing whale carcasses [18].  The 

analysis used to describe these communities has primarily focused on the descriptive 

characterization and comparison of the relative abundance of proteins that belong to specific 

functional categories. 

Attempts to analyze metagenomic sequences have proven that a metagenomic 

sequence is more than just a large genome sequencing project.  First, the goal of most genome 

sequence projects is a closed genome sequence where every nucleotide is represented by a 

desired number of independent sequence reads.  In metagenomics, the probability of finding 

overlapping sequence reads is low in most environments [19].  The probability that overlapping 

sequence reads are from the same population of bacteria or archaea is even lower so that 

contigs that are formed are out of necessity chimeras of different genomes that may not even be 

from the same phylum [20].  Second, a closed genome represents a statistical population of the 

genes harbored by that organism; therefore, comparing genome sequences for the presence or 

absence of genes is straightforward.  Since it is not possible to close a metagenome, every 

metagenomic sequence collection represents a statistical sample of the genomes in an 

environment.  Therefore, it is necessary to treat the comparison of communities as a statistical 
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problem.  Third, although lab-based cultures that are sequenced do evolve, the differences 

between lab stocks is minimal compared to the changes faced by natural communities over 

short periods of time.  This makes it difficult to reanalyze a community once a genome 

sequence has been obtained to improve annotations and understand gene expression. 

Five general approaches have been taken to bring statistical analysis to the analysis of 

metagenomic sequences.  The first adapts genomics-based approaches to metagenomics by 

constructing and curating databases to aid in the annotation and analysis of genes and the 

contigs they reside on [21, 22].  Unfortunately, although such databases provide a critical 

infrastructure, given the large number of ORFs that have no known function (e.g. 69% in the 

Sargasso Sea [7]) and the paucity of contigs formed from many sequencing projects (e.g. <1% 

in the soil [18]), such database searches will be of limited value for comparative metagenomics.  

The second approach to analyzing metagenomic sequences has been based on the 

comparison on the relative abundance of annotation categories within the different sequence 

collections and within databases of assembled genomes [9, 10, 17, 18, 23]; these methods 

implicitly assume that the metagenomic sequences represent a statistical population and/or that 

the reference databases represent the normal distribution of genes in communities.  A third set 

of approaches attempts to assign a phylogenetic origin for a sequence fragment in the absence 

of a phylogenetic anchor (e.g. 16S rRNA gene) using nucleotide frequency analysis or 

sequence signatures [24-27].  Such methods are limited for use with most environments 

because of the difficulty in forming contigs that are long enough to carry out a robust analysis 

and assume that the contigs that form are not chimeric.  A fourth approach has attempted to 

compare communities without an annotation.  These have attempted to quantify the species 

richness of communities based on the distribution of sequence read depth among contigs [7] 

and to compare the diversity of communities based on the relative frequency of different length 

oligonucleotides in the DNA sequence pool [28].  Finally, there have been attempts to using 
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traditional population biology by analyzing the diversity of specific families of genes found in 

metagenomic collections [29]. 

Based on previous metagenomic sequencing efforts, we were interested in developing 

statistical tools to compare the richness, membership, and structure of the complement of ORFs 

from multiple communities in which assembly of the entire genomes is not possible.  To address 

this problem, we adapted a set of statistical tools designed to analyze collections of 16S rRNA 

gene sequences to the analysis of protein coding genes [30-33].  Our goal was to provide 

additional tools to make statistical and ecological inferences using metagenomic sequence data.  

Instead of using a traditional pairwise DNA distance matrix obtained from a sequence alignment 

of homologous genes as is done with 16S rRNA genes, we used BLAST score ratios (BSRs) to 

develop a distance matrix that represents the similarity of ORFs across homologous groups 

[34].  To make comparisons among communities, we propose grouping ORFs into operational 

protein families (OPFs) which are analogous to operational taxonomic units (OTUs) derived 

from 16S rRNA gene sequences. 

 

Results and discussion 

 A new distance matrix.  The goal of this aspect of the work was to develop a method to 

compare sequence alignments that circumvented the considerable computational effort required 

to obtain every possible global sequence alignment and pairwise distance.  We used local 

alignments provided in BLAST and the resulting pairwise BLAST scores to generate BSRs.  The 

BSRs approximate the fraction of identical amino acids between two peptide fragments so that a 

BSR value of 0.30 between two fragments means that they are approximately 30% identical 

over their full length.  By analogy to the analysis of 16S rRNA gene sequences of uncultured 

bacteria where OTUs are developed based on a distance matrix, we propose using BSR values 

to define OPFs.  Depending on the goals of the analysis an OPF can be defined as necessary.  

For illustrative purposes and based on previous implementations of BSRs for comparative 
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genomics applications [34, 35], unless otherwise indicated we will operationally define an OPF 

as a collection of fragments that have a BSR greater than 0.30. 

 To assess the feasibility of using peptide fragments from individual sequence reads, we 

identified peptide fragments from the individual sequence reads used to assemble the Bacillus 

anthracis, str. Ames genome (GenBank Accession NC_003997, [36]), which contains 4,514 

ORFs that were longer than 100 aa.  From the individual sequence reads, we identified 92,220 

peptide fragments longer than 100 aa.  The computational effort required for the pairwise 

alignment and distance calculation among 92,220 ORFs was prohibitive.  Because we expected 

a majority of the peptide pairs would not have significant similarity, we used BLAST to identify 

those comparisons that had significant similarity and to calculate BSRs as a surrogate for 

similarity or distance values (distance = 1-BSR).  Instead of generating a 92,220 x 92,220 matrix 

with 8.5 x 109 values, we took advantage of the sparseness of the matrix to simplify the 

calculations and construct a set of three linked-lists in which each list contained the row, 

column, and BSR values of the full BSR matrix.  Since the BSR for a peptide fragment 

compared to itself is 1.0 and the BSR for a non-significant comparison is 0.0, the corresponding 

entries in the linked lists could be removed.  Once this was completed, there were 2.1 x 106 

values, which represented a significant reduction in the memory required to store the data. 

 MG-DOTUR.  To assign peptide fragments to OPFs we rewrote the computer code for 

DOTUR to be compatible with sparse BSR matrices.  DOTUR is used to assign collections of 

16S rRNA gene sequences and to use the resulting frequency distribution of sequences among 

OTUs to estimate richness and diversity (Table 1).  By analogy, MG-DOTUR assigns peptide 

fragments to OPFs and estimates the richness and diversity of OPFs for any desired OPF 

definition.  Two classes of methods are available to estimate richness based on frequency 

distributions.  The first uses parametric distributions such as the lognormal distribution to predict 

the number of unseen groups in a community [37].  Although it is often assumed that microbial 

communities follow a lognormal distribution, there are no published examples in the microbial 
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ecology literature for which the observed data support such an assumption.  This is primarily 

due to the difficulty in obtaining a sufficient number of observations to implement these 

methods.  An alternative approach uses non-parametric estimators that do not assume an 

underlying frequency distribution and are relatively easy to compute.  These estimators are 

implemented in DOTUR and MG-DOTUR. 

 Based on the observed frequency distribution of peptide fragments in each OPF0.30, we 

applied the Chao1, ACE, and interpolated Jackknife richness estimators to predict the OPF0.30 

richness.  The predicted OPF richness was approximately three times greater than the OPF 

richness that was observed in the assembled B. anthracis genome (Table 1).  When we 

mapped each OPF from the closed genome to the OPFs from the individual sequence reads we 

found that each OPF from the closed genome was linked to an average of 3.08 (s.d.=2.75) 

OPFs from the sequence reads.  Further inspection showed that the multiple OPFs from the 

sequence reads corresponded to different regions of long ORFs from the closed genome 

sequence.  Similar results have been observed when attempting to estimate the number of 

expressed genes using expressed sequence tags [38]. 

 To overcome this problem, we developed a method of merging OPFs from the sequence 

reads to obtain a more meaningful OPF distribution.  For two OPFs to merge, we required that 

the carboxyl-terminus of at least one sequence in the first OPF overlap with the amino-terminus 

of at least one sequence in the second OPF by at least 5 amino acids.  Furthermore, we 

incorporated a BSR penalty so that for two OPFs to merge the overlapping region had to have a 

BSR greater than the BSR currently being used to form clusters.  We used penalties of 0.00, 

0.05, 0.10, 0.15, and 0.20 (Table 1).  We then applied this merging scheme to the OPFs from 

the sequence reads and calculated two types of error [38].  Type I errors corresponded to the 

fraction of OPFs from the closed genome that mapped to multiple OPFs from the sequence 

reads.  Type II errors corresponded to the fraction of OPFs from the sequence reads that 

corresponded to different OPFs from the closed genome (Table 2).  We found that as we 
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increased the penalty, the Type I error decreased and the Type II error increased.  Based on 

this analysis, we decided to implement a penalty of 0.15 because both types of error were 7.1 

and 7.4%, respectively.  When the resulting frequency distribution was used to calculate 

collector’s curves using the observed and predicted richness, the curves converged towards the 

true OPF richness (Fig. 1A).  This was used to further validate the choice of penalty.  A 

limitation of this approach is that the resulting number of peptide fragments in a merged OPF is 

a product of the length of the complete ORF and the relative abundance of the ORF in the 

metagenome.  Therefore, we will report OPF richness from merged analysis and annotations 

from both merged and non-merged analyses. 

 Comparing membership and structure using OPFs.  Other tools have been 

developed to compare the membership (e.g. SONS) and structure (e.g. ∫-LIBSHUFF and 

AMOVA) of microbial communities using 16S rRNA gene sequences.  Again, by analogy we 

were interested in using OPFs and BSRs to compare microbial communities using 

metagenomic sequences.  SONS uses the output of DOTUR and MG-DOTUR to complete its 

analysis and required no further modification for use with metagenomic sequences.  

∫-LIBSHUFF and AMOVA were modified to use the sparse matrix data representation used in 

MG-DOTUR.  The resulting programs were designated MG-LIBSHUFF and MG-AMOVA.  To 

test these programs, we randomly divided the 92,220 B. anthracis peptide fragments into two 

artificial communities that were each represented by 46,110 peptide fragments.   

 We first applied SONS to these two communities to compare the membership and 

structure of the artificial communities using OPFs.  We calculated the shared OPF richness 

using the Chao non-parametric estimator of shared richness and obtained a value of 3,561 

OPFs.  Although this estimate of shared richness is lower than 95% confidence interval 

observed for the total collection of peptide fragments using the Chao1, ACE, or Jackknife 

estimators, the shard Chao estimator was still increasing with additional sampling (Fig. 1B).  
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This indicates that if sequencing had continued the estimate of shared richness would have 

probably overlapped eventually.  The abundance-based Jaccard (Jabund) estimate of similarity 

was 1.00, which predicted that all of the peptide fragments belonged to shared OPFs0.30.  Yue 

and Clayton’s measure of community overlap, θ, was 0.97, which indicated that the distribution 

of peptide fragments among OPFs was the same in both artificial communities.  These results 

indicate that SONS is amenable to analyzing OPFs to detect similarity between the 

memberships and structures of different communities. 

 An alternative approach to comparing community structures is to perform hypothesis 

tests.  AMOVA uses an analysis of variance (ANOVA)-type framework to test the hypothesis 

that the difference in genetic diversity between two or more communities is not significantly 

different than the diversity within each community.  We implemented this analysis in a program 

designated MG-AMOVA to perform a single-classification analysis.  Our comparison of two 

randomly generated B. anthracis peptide fragment pseudo-communities revealed that the 

observed differences between the two pseudo-communities were not statistically significant 

(p>0.05).  Next we modified the program ∫-LIBSHUFF to create MG-LIBSHUFF to test the 

hypothesis that two communities have the same structures.  As expected, the differences in 

structure between the two pseudo-communities were not statistically significant (P > 0.05).   

Each of these comparisons indicate that we can make statistical comparisons between the 

membership and structure of microbial communities using peptide fragments identified in single 

sequence reads from metagenomic data. 

 Acid Mine Drainage.  Tyson et al. [15] used metagenomic sequencing to analyze a 

biofilm growing in acid mine drainage (AMD) that had a pH below 1.0.  They obtained 322 

archaeal and bacterial 16S rRNA gene sequences and 103,462 random paired sequence reads, 

which represented 76.2 Gbp of DNA.  We used DOTUR to assign 16S rRNA gene sequences to 

nine OTUs and predicted there were an additional three OTUs (95% confidence interval [95% 
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CI] = 0 to 8) that were not observed (Fig. 2A).  The most abundant OTU was similar to 

Leptospirillum ferriphilum (n=247) 16S rRNA gene sequences. 

 Next, we used MG-DOTUR to assign 99,419 peptide fragments to 10,235 merged OPFs.  

The dominant merged OPF (n=901 fragments) did not have a homolog in GenBank and the 

next most abundant merged OPFs` were most similar to a conserved hypothetical protein from 

Leptospirillum sp. Group II UBA (n=773, EAY56482) and a transposase (n=461, ZP_00669012).  

The dominant non-merged OPF did not have a homolog in GenBank (n=114 fragments) and the 

next most abundant OPFs were most similar to an HNH nuclease (n=96, ZP_01023224) and a 

mutator-type transposase (n=88, ZP_00669012).  The Chao1 richness estimator predicted that 

there were a minimum of 18,463 merged OPFs0.30 in the community (95% confidence interval 

[95% CI] = 17,794 to 19,191; Fig. 2B).  Considering the lack of a known function for two of the 

most abundant OPFs in the AMD community, this analysis shows the importance of including 

such sequences in metagenomic sequence analyses and may indicate that subsequent analysis 

of this group of sequences would reveal important physiological information about the 

community. 

 Soil.  Tringe et al. [18] used Minnesotan farm soil to build libraries and sequence 1,633 

bacterial 16S rRNA gene fragments and 149,085 random DNA fragments, representing 76 Gbp 

of DNA.  We previously showed that the OTU richness was approximately 2,000 [39].  The three 

most abundant OTUs were representatives of the Chloroflexi. 

 Using MG-DOTUR to analyze the random metagenomic sequence reads, the 143,422 

peptide fragments clustered into 98,066 merged OPFs. The members of the dominant merged 

OPF had similarity to a putative two-component response regulator (n=688; NP_254170).  The 

next most abundant merged OPFs had similarity to a histidine kinase (n=566; YP_386369) and 

a serine/threonine protein kinase (n=371; YP_825781).  The three most abundant non-merged 

OPFs in the soil community had homology to a putative response regulator (n=29, NP_520928), 

a PadR-like transcriptional regulator (n=21, ZP_00524755), and a Cu2+-transporting ATPase 
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(n=20, ZP_01060472).  Because of the considerable diversity in the soil sample, an insufficient 

number of peptide fragments were sampled to obtain a reliable OPF richness estimate; 

however, using the Chao1 richness estimator we predicted that the OPF richness was at least 

361,546 (95% CI=355,613 to 367,615; Fig. 3B).  Although considerable additional sequencing 

effort is required to obtain a reliable estimate of OPF richness, it is interesting that in spite of the 

relatively large OTU and OPFs richness, it was possible to assign a large number of peptide 

fragments to the same OPF. 

 Whalebone communities.  Tringe et al. [18] compared three bacterial communities 

growing on the bones of two whales (AHAA and AHAI were from the same whale) at the bottom 

of the Pacific Ocean using 16S rRNA and metagenomic sequence analysis.  Based on 16S 

rRNA sequence data, the three communities designated AGZO (n=73), AHAA (n=65), and AHAI 

(n=68) had a Chao1-estimated OTU richness of at least 140 (95% CI=67 to 366), 48 (95% 

CI=29 to 121), and 19 (95% CI=17 to 34).  The most abundant OTU0.03 from each of the three 

communities affiliated with members of the Arcobacter sp. (n=15), Bacteroidetes (n=12), and 

Flavobacteriales (n=19), respectively.  We estimated that each of the three communities shared 

between 1 and 3 OTUs0.03 with any of the other communities.  The lack of conservation of 

membership between the three communities resulted in low Jabund coefficients (0.01 to 0.19), θ 

values (0.04 to 0.11), and statistically significant P values when comparing the communities 

using AMOVA and ∫-LIBSHUFF (all p<0.001).  Although the three communities each came from 

similar environments, the taxonomic membership and structure of the three communities were 

considerably different. 

 We applied the newly developed statistical tools to the metagenomic sequences of the 

three communities to assess their genetic and functional similarities.  The three communities, 

AGZO, AHAA, and AHAI, yielded approximately 38,000 (25 Mbp), 38,000 (25 Mbp), and 40,000 

(25 Mbp) sequence reads and 38,981, 36,165, and 33,199 peptide fragments, which were over 

100 aa long, respectively.  The dominant merged OPFs in each community were similar to a 
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histidine kinase (AGZO, n=386; YP_341128) and an ABC transporter (AHAA, n=175 and AHAI, 

n=166; ZP_01203057).  The most abundant non-merged OPF found in each community was 

homologous to a conserved hypothetical protein (AGZO: n=22, NP_442017), RecR (AHAA: 

n=9, ZP_00952890), another conserved hypothetical protein (AHAI: n=16, ZP_00949155), and 

a putative transposase (AHAI: n=16, ZP_00903285).  The Chao1 OPF richness estimates for 

each of the communities continued to increase with additional sampling, indicating that the 

communities had a minimum OPF richness of 69,541 (95% CI=67,618 to 71,550), 77,923 (95% 

CI=75,699 to 80,276), and 49,120 (95% CI=47,767 to 50,539) for the AGZO, AHAA, and AHAI 

communities, respectively. 

 Although there was an insufficient number of peptide fragments to obtain a reliable 

estimate of the fraction of OPF membership that was shared between any two of the three 

communities, we estimated that they shared at least between 10 and 20% of their OPF 

membership (Fig. 4).  The “core” whalebone OPF membership that was shared among the three 

whalebone communities had a richness of at least 3,800 OPFs (approximately 2.5% of the total 

richness); 1,678 of these were actually observed in the sequence collection.  The most 

commonly shared OPFs among the three communities represented a variety of activities 

including metal transport, sensors, and housekeeping functions (Table 3). 

 Comparison of the community structures using the peptide fragments using MG-

LIBSHUFF (all p<0.001) and MG-AMOVA (all p<0.001) found that the structures of these three 

communities were significantly different.  Using OPFs, θ varied between 0.39 and 0.55 

indicating that there was some similarity in community structure.  The ability to quantify and 

assess the differences in communities without exhaustive sampling of the three whalebone 

communities indicates the importance of applying statistical methods to metagenomic sequence 

data.  Such analyses make comparative metagenomics amenable to ecologically-based 

hypothesis testing. 
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 Comparison of the three environments.  To assess the relative similarity of OTU0.03 

membership between environments, we used DOTUR to cluster the 2,161 16S rRNA gene 

fragments from the AMD (n=322), soil (n=1,633), and whalebone communities (n=206).  No 

OTUs were shared between any two of the three communities; however, additional sampling 

may have identified OTUs that were shared between environments. 

 We compared the relative similarity of OPF membership between environments by 

clustering the 351,186-peptide fragments from the AMD (n=99,419), soil (n=143,422), and 

whalebone communities (n=108,345) using MG-DOTUR and then we estimated the 

membership and structure overlap among the three communities (Fig. 5).  Measuring the 

overlap of OPFs measurement among the three communities resulted in the estimate that more 

than 800 OPFs were shared among the five communities; this represents less than 0.3% of the 

total OPF richness found in the five communities.  Of this pool, 774 merged OPFs and were 

actually observed with functions including metal transport, housekeeping, and various 

dehydrogenase activities (Table 4).  Applications of the statistical tools to these types of 

comparisons will enable researchers to investigate the problem of biogeography using genome-

based methods. 

 For comparison, we compared the complement of ORFs from the fully sequenced 

Bacillus anthracis str. 'Ames Ancestor' (GenBank accession AE017334), Bacillus cereus ATCC 

10987 (AE017194), Escherichia coli K12 (U00096), Methanosarcina acetivorans C2A 

(AE010299), Methanosarcina barkeri str. fusaro (CP000099) genomes.  We used MG-DOTUR 

to assign ORFs to OPFs and then we used SONS to compare the OPF0.30 overlap between 

these genomes, which we selected for their phylogenetic similarity and breadth.  As predicted 

based on current understanding of phylogenetics, the more closely related organisms had the 

greatest OPF0.30 overlap.  The comparison between B. anthracis and B. cereus yielded Jclas and 

θ values of 0.70 and 0.74, E. coli and Y. pestis yielded values of 0.43 and 0.20, and M. 

acetivorans and M. barkeri yielded values of 0.54 and 0.43.  All of the other pairwise 
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comparisons yielded values below 0.08 for both parameters.  This analysis suggests that the 

comparisons between the OPFs0.30 identified in the metagenomic sequences represent the level 

of differences expected between phylogenetically disparate groups of bacteria.  Furthermore, 

analyses using completed genome sequences may enable investigators to define the size and 

boundaries of so-called “pan-genomes.” 

 

Conclusions 

 We present a statistical toolbox to estimate the functional richness and overlap among 

communities based on peptide fragments deduced from DNA sequence data.  These statistical 

approaches are necessary, in part, because the immense genomic diversity contained in most 

communities precludes the formation of contigs.  There is also considerable question regarding 

the robustness of sequence assembly [40].  Although understanding these complex 

communities is tantalizing, it may prove useful to identify more communities similar to the AMD 

and whalebone communities that have a relatively low diversity to develop and test tools that 

can then be applied to soil.  As sequencing technologies improve, the feasibility of obtaining 

nearly complete sequence coverage of the more diverse communities will improve.  The rapid 

advances in sequencing short DNA fragments (approximately 100 bp long) in a highly 

parallelized manner [41] presents many new opportunities, but the method may not be 

amenable to metagenomic sequencing because the short sequence reads produce peptide 

fragments less than 100 aa long, which could make a meaningful ORF identification and 

analysis of functional diversity difficult. 

 Innovative methods have been developed to compare collections of 16S rRNA 

sequences, and analogous new methods are needed for comparing metagenomic sequences.  

For example, improving our ability to estimate and interpret the biological meaning of OPF 

richness will be helpful for describing the relative functional capacity of a community.  Our 

analysis does not address the possibility that distant OPFs might serve the same biological 
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function and that members of the same OPF might have different functions.  Therefore, further 

work is needed to unify studies of functionally active clones into a statistical framework.  For 

example, comparing the collection of genes conferring antibiotic resistance found in multiple 

environments would enable us to understand better the diversity of these genes as well as their 

biogeography. 

Our analysis moves beyond previous attempts to compare microbial communities at the 

genomic level by not being dependent upon reference databases and introducing statistical rigor 

to the description and comparison of microbial communities.  For example, previous analyses 

formed clusters based on similarity to reference databases and excluded those peptide 

fragments with no significant matches, which limited the scope of the analysis.  Here, we formed 

OPFs using the observed data, in essence allowing the data to “speak for themselves”, which 

allowed for a comprehensive comparison of the data.  Previous analyses also based the level of 

similarity between communities on the observed peptide fragments as though they represented 

a statistical population.  Here, we treated the data as a statistical sample and employed 

statistical tools to estimate the level of similarity between community membership and structure.  

These tools enable a quantitative, comprehensive, and statistically robust analysis of microbial 

communities at the genomic level. 

 Shotgun sequencing of metagenomic communities is becoming increasingly popular and 

routine.  The results of these efforts will provide more insight if they are wrapped in robust 

ecological and statistical frameworks.  Tools are needed to advance data analysis beyond the 

frequency of different COGs or KEGG categories that are found within a community.  This study 

is a step in building such a framework to compare microbial communities functionally at the 

genomic level.  In addition to estimating community relatedness based on metagenomic data, 

our approach accounts for present but unsampled peptide fragments, is independent of a 

subjective annotation process, and includes peptide fragments with no known function. 
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Methods 

Genome sequence data.  We obtained the 101,379 sequence reads used to assemble 

the Bacillus anthracis str. Ames whole genome sequence from GenBank (NC_003997).  Each 

sequence read was evaluated by fastgenesb at the Joint Genome Institute using the same 

parameters used to predict the identity of peptide fragments in two previous metagenomic 

sequencing studies [15, 18].  We also obtained the complete complement of 4,514 ORFs from 

the finished genome that were longer than 100 aa.  All of the predicted peptide fragments from 

the published metagenomic sequencing projects using an acid mine drainage biofilm [15], 

whalebone [18], and soil [18] were obtained from the Joint Genome Institute.  Only those ORFs 

and peptide fragments longer than 100 aa were considered in our analyses. 

Modified toolbox.  DOTUR is a freely available computer program that uses a distance 

matrix to assign sequences to operational taxonomic units (OTUs) using either the nearest, 

average, or furthest neighbor clustering algorithms for all possible distances and then constructs 

rarefaction and collector’s curves for a variety of ecological parameters [30].  These curves can 

be used to compare the relative richness, the number of different OTUs in a community, of two 

samples and to estimate the overall richness within a sample.  Similarly, MG-DOTUR clusters 

sequences into OPFs using a BLAST table as the input.  ORFs are assigned to OPFs using the 

furthest neighbor clustering algorithm [42], which requires that all sequences in the OPF have a 

pairwise BSR value greater than a specified value.  Because BSRs are not necessarily 

symmetric (i.e. BSRij≠BSRji), they were forced to be symmetric by using the smaller of the two 

values.  Once MG-DOTUR assigns sequences to OPFs, rarefaction curves of the number of 

OPFs observed on average as a function of ORFs sampled and collector’s curves of the Chao1 

[43], ACE [44], and the interpolated Jackknife [45] richness estimates as a function of ORFs 

sample are calculated at multiple BSR values predefined by the user.  MG-DOTUR uses a 

switch to calculate the ACE estimator.  If the coefficient of variation (γ) is greater than 0.8, then 

the ACE-1 estimator is calculated, otherwise the simple ACE estimator is used.  This follows 
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recommendations made by Anne Chao for use of the program SPADE [46].  This study reports 

results obtained by defining an OPF a group of sequences with a BSR value greater than 0.30 

[34, 35] and OTU as a group of sequences that are all more than 97% identical to each other 

[30]. 

 ∫-LIBSHUFF [31] is a modified version of the program LIBSHUFF [32] that makes use of 

the integral form of the Cramér-von Mises statistic to determine whether two communities are 

either samples of the same statistical population, sub-samples of each other, or were drawn 

from different statistical populations.  As employed in ∫-LIBSHUFF, the Cramér-von Mises 

statistic is a function of the coverage of one sequence collection onto itself (i.e. homologous 

coverage, CX) compared to its coverage onto another collection (i.e. heterologous coverage, 

CXY).  Coverage is the fraction of sequences that have another sequence within a given distance 

of them.  Application of the LIBSHUFF-style analysis requires converting BSR values into 

distances by subtracting the BSR value from one and setting the limits of integration from zero 

to 0.70.  MG-LIBSHUFF calculates the ∆CXY statistic and evaluates its significance using a 

Monte Carlo testing procedure as described elsewhere [31, 32]. 

    
∆CXY = CX (D) −CXY (D)( )

2

0

1−BSRmin∫ dD  

where, 

D = the distance (1-BSR) that is used to determine the level of coverage. 

CX(D) and CXY(D) = measures of homologous and heterologous library coverage. 

BSRmin = the smallest meaningful BSR value; for this analysis set at 0.30  

 

 Population biologists have developed an analysis of variance (ANOVA)-style of analysis, 

which tests whether a collection of communities have similar genetic diversities using 

mitochondrial DNA sequences and other genetic markers.  This method has been designated 

as either the analysis of molecular variance (AMOVA) [47] or non-parametric multivariate 
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analysis of variance (MANOVA) [48].  This analysis has been applied for comparing bacterial 

communities using 16S rRNA sequences [33].  The general method is based on partitioning the 

sum of the squared elements in a distance matrix similar to what is done in an ANOVA.  As 

applied in MG-AMOVA, we implement a single-classification ANOVA design to determine 

whether the average genetic average genetic difference between the three whalebone 

communities was significantly greater than the difference within a community.  The total sum-

squared error (SST) and within community sum-squared error (SSW) is calculated by 

    

SST =
1

N
1− BSRij( )

2

j = i +1

N∑
i =1

N−1∑  

    

SSW =
1

N
1− BSRij( )

2

εij

j = i +1

N∑
i =1

N−1∑  

where, 

BSRij = the BSR value between the ith and the jth peptide fragments. 

εij = 1 if i and j are in the same community, otherwise it is 0. 

N = total number of peptide fragments 

 

The sum-squared error among communities (SSA) can be calculated as SSA=SST-SSW.  

Significance was determined by randomizing the assignment of sequences to the sequence 

collections and recalculating the statistic and determining the proportion of randomizations 

resulting in an equal or smaller SSW value than that observed from the randomized distribution 

[48]. 

 OPF-based comparisons of community membership and structure.  Using the 

frequency that each OPF was observed in multiple communities, it has been possible to 

estimate the number of OPFs that are shared between communities as well as describe the 

overlap between community structures.  Analogous to the Chao1 non-parametric richness 
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estimator [43], Chao et al. [49] derived a non-parametric estimator of the richness shared 

between two communities: 

    
SA,B Chao = S12 + f11

f1+f+1

4f2+f+2

+
f1+

2

2f2+

+
f+1

2

2f+2

 

where, 

 S12 = number of shared OPFs in A and B 

f11 = number of shared OPFs with one observed individual in A and B 

f1+, f2+ = number of shared OPFs with one or two individuals observed in A 

f+1, f+2 = number of shared OPFs with one or two individuals observed in B 

 

 By a similar approach the fraction of individuals or peptide fragments that belong to a 

shared OPF can be estimated [50, 51]: 

    

Uest =
X i

ntotali =1

S12∑ +
mtotal −1

mtotal

f+1

2f+2

X i

ntotali=1

S12∑ I Yi = 1( ) 

    

Vest =
Yi

mtotali =1

S12∑ +
ntotal −1

ntotal

f1+

2f2+

Yi

mtotali =1

S12∑ I X i = 1( ) 

where,  

Uest, Vest = fraction of sequences from A and B that belong to a shared OTU 

Xi, Yi = abundance of the ith shared OTU in A and B 

ntotal, mtotal = total number of sequences sampled in A and B 

I(•) = if the argument, •, is true then I(•) is 1; otherwise it is 0. 

 

Uest and Vest can then be used to estimate an abundance-based Jaccard similarity coefficient: 

  
Jabund =

UestVest

Uest +Vest −UestVest
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 To incorporate into the measure of community similarity the proportion of peptide 

fragments in each OPF, Yue and Clayton [52] developed the parameter θ: 

    

θ =

X i

ntotal

Yi

mtotali =1

S12∑
X i

ntotal

 
  

 
  

2

+
i =1

S1∑ Yi

mtotal

 
  

 
  

2

i=1

S2∑ −
X i

ntotal

Yi

mtotali =1

S12∑
 

where, 

 S1 and S2 = observed number of OPFs in each community. 

 

 16S rRNA sequence analysis.  The three metagenomic sequencing projects were 

selected because they were accompanied by parallel 16S rRNA sequence collections.  We 

obtained the sequences from the original authors and aligned the sequences using the 

greengenes website [53].  Aligned sequences were imported to ARB [54] and overlapping 

sequences were used to construct distance matrices with a Jukes-Cantor correction for multiple 

substitutions.  Distance matrices were analyzed using DOTUR [30], ∫-LIBSHUFF [31], and MG-

AMOVA as described above. 

 Availability of data and software.  MG-DOTUR, MG-LIBSHUFF, MG-AMOVA and all 

sequence and analysis files are available from the authors’ website [55].   
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Table 1.  Tools used to describe and compare microbial communities. 

Tool Application Input Reference 

DOTUR / 
MG-DOTUR 

Assigns sequences to OTUs based on 
genetic distance between sequences and 
constructs rarefaction curves and collector’s 
curves for richness and diversity estimators 

Distance 
Matrix or 

BLAST Table 
[30] 

SONS 
Generates collector’s curves for estimates 
of the fraction and richness of OTUs shared 
between communities  

OTU 
Designation 

[56] 

∫-LIBSHUFF/ 
MG-LIBSHUFF 

Tests whether the structures of two 
communities are the same, different, or 
subsets of one another using the Cramer-
von Mises statistic 

Distance 
Matrix or 

BLAST Table 
[31, 32] 

AMOVA/ 
MG-AMOVA 

Determines whether two or more 
communities differ significantly in genetic 
diversity using an analysis of variance-type 
formulation  

Distance 
Matrix or 

BLAST Table 
[33, 47, 48] 
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Table 2.  Summary of errors and richness estimates when different criteria were used to 

merge OPFs.  OPFs were merged when at least one peptide fragment in each OPF overlapped 

at least 5 aa and had a BSR value that was above the user specified level by the merge penalty.  

The type I error rate is the fraction of OPFs from the closed genome that correspond to multiple 

OPFs from the individual sequence reads.  The type II error rate is the fraction of OPFs from the 

individual sequence reads that corresponded to more than one OPF from the closed genome 

sequence.  

Richness Estimation 
(True Richness = 3,730) 

Merge 
Penalty 

Type I 
Error 
Rate 

Type II 
Error 
Rate 

Observed 
Richness 

Chao1 ACE Jackknife 

Penalty = 0.00 0.063 0.129 2,927 3,038 2,976 3,137 

Penalty = 0.05 0.067 0.100 3,223 3,332 3,271 3,413 

Penalty = 0.10 0.071 0.074 3,462 3,574 3,510 3,653 

Penalty = 0.15 0.080 0.056 3,642 3,757 3,691 3,839 

Penalty = 0.20 0.091 0.046 3,810 3,925 3,858 4,004 

No merge 0.719 0.003 11,538 11,668 11,616 11,968 
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Table 3.  Summary of most abundant merged and non-merged OPFs from the three 

whalebone communities.   

Number of ORFs in OPF 

AGZO AHAA AHAI 
Putative annotation 

Representative 
GenBank 

Accession 

Merged OPFs 

386 32 26 Histidine kinase YP_341128 

229 175 166 ABC transporter ZP_01203057 

137 21 22 Aerotaxis sensor receptor YP_339458 

91 27 33 Sensory box protein YP_341105 

75 39 65 ATP-dependent RNA helicase protein NP_518660 

74 62 51 Translation elongation factor ZP_01061839 

56 85 104 Acyl-CoA dehydrogenase ZP_01106089 

52 68 66 Aldehyde dehydrogenase YP_341708 

49 65 93 Copper transport membrane protein ZP_01060525 

49 53 72 Acetyl-CoA acetyltransferase ZP_01165108 

44 45 66 Cation efflux protein YP_678123 

     

Non-merged OPFs 

8 5 3 Thioredoxin ZP_01901399 

7 3 5 Conserved hypothetical protein ZP_01054178 

6 5 3 GTP-binding protein LepA YP_745328 

6 3 9 DNA topoisomerase IV, subunit A YP_756797 

5 6 3 50S ribosomal protein, L20 ZP_01108363 

5 6 3 50S ribosomal protein, L14 ZP_00952078 

5 4 7 30S ribosomal protein, S11 ZP_01302802 

4 8 5 Recombination protein, RecR ZP_00948629 

3 4 6 DNA helicase, RuvB YP_357747 
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Table 4.  Summary of most abundant merged and non-merged OPFs from the AMD, soil, 

and whalebone communities. 

Number of ORFs in OPF 

AMD Soil Whale 
Putative annotation 

Representative 
GenBank 

Accession 

Merged OPFs 

562 350 451 Acetate CoA ligase ZP_01856978 

1628 1515 1240 Diguanylate cyclase signal protein YP_001112705 

796 1226 1086 ABC transporter ZP_01060315 

371 163 138 Resistance protein ZP_01908921 

216 121 152 Dehydrogenase ZP_01454599 

238 237 236 Cation transporting ATPase ZP_01060472 

237 170 269 Dehydrogenase ZP_01105894 

476 282 318 Translocation elongation factor ZP_01594411 

123 125 156 DNA helicase ZP_01189997 

169 184 289 Acyl CoA dehyodrogenase ZP_01512967 

     

Non-merged OPFs 

22 7 5 Urocanate hydratase ZP_01709366 

18 5 13 DNA gyrase, A subunit ZP_01052578 

17 9 12 Nucleoside-diphosphate kinase ZP_01106957 

11 13 14 Nitrogen regulatory protein PII NP_767252 

10 10 10 50S ribosomal protein, L19 YP_471434 

9 12 9 GTP-binding protein LepA ZP_01650030 

7 11 14 50S ribosomal protein, L20 ZP_01108363 

8 10 9 Excinuclease ATPase subunit YP_861824 

6 10 11 GMP synthase ZP_01753395 

5 13 10 30S ribosomal protein, S13 ZP_01885769 
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Figure 1.  Analysis of the richness and community membership when peptide fragments 

identified in individual sequence reads were used to assemble the Bacillus anthracis str. Ames 

genome sequence.  (A)  The collector’s curves for three non-parametric richness estimators and 

observed richness using individual sequence reads compared to the OPF richness of the 

assembled genome (horizontal black line).  The solid lines represent the richness of non-

merged OPFs and the dashed lines represent the richness of merged OPFs with a penalty of 

0.15.  (B) Collector’s curves of parameters describing the similarity between two randomly 

selected subsets of peptide fragments. 

 

Figure 2.  Collector’s curves for the OTU (A) and OPF (B) richness observed and estimated 

using DNA extracted from an AMD biofilm community. 

 

Figure 3.  Collector’s curves for the OTU (A) and OPF (B) richness observed and estimated 

using DNA extracted from an agricultural soil in Minnesota, USA. 

 

Figure 4.  Venn diagram comparing the OPF membership found in three whalebone microbial 

communities (AGZO, n=38,981 peptide fragments; AHAA, n=36,165; and AHAI, n=33,199).  

Below each community name is the Chao1 richness estimate and the 95% confidence interval 

for that community.  We estimated the richness of the overlapping regions based on the 

pairwise SA,B Chao shared richness estimates between the three communities and by pooling two 

communities and estimating the shared fraction with the third community.  These estimates are 

provided on the right side of the figure. 

  

Figure 5.  Venn diagram comparing the pooled OPF membership found in the AMD (n=99,419 

peptide fragments), soil (n=143,422), and whalebone (n=108,345) microbial communities. 
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