MODELLER
A Program for Protein Structure Modeling
Release 61

Andrej Sali
with help from
Andras Fiser, Roberto Sadnchez, Marc A. Marti-Renom,
Bozidar Jerkovic, Azat Badretdinov,
Francisco Melo, John P. Overington, and Eric Feyfant

The Rockefeller University
1230 York Avenue
New York, NY 10021, USA
tel +1-212-327 7550, fax +1-212-327 7540
email sali@rockefeller.edu
URL http://guitar.rockefeller.edu/

21 December, 2001

!This version of the manual is not up to date.

ii

Contents

Copyright notice

Acknowledgments

1 Introduction

1.1 What is MODELLER?t o it it et e e e e e e e e e e e e e e e e e e
1.2 MODELLER bibliography e
1.3 Distribution e e e
1.4 Installation o L
1.5 Bugreports e e e e e e
1.6 Method for comparative protein structure modeling by MODELLER
1.7 Comparative protein modeling primer L L
1.7.1 Finding structures and sequences related to the target sequence
1.7.2 Preparing an initial family alignment of all structures and sequences
1.7.3 Becoming familiar with the family fold and improving the alignment
1.7.4 Selecting the templates e
1.7.5 Model building L e e e
1.7.6 Evaluating the models L
1.7.7 Repeat the cycle o . e e e
1.8 Tutorial on using MODELLER for comparative modeling
1.8.1 Preparing input fileso
1.8.2 Running MODELLER o v ittt et i et e e e e e e e e e e e e e
1.8.3 Fully automated comparative modelingo oo
1.8.4 Improved modeling of loops in MODELLER-6
1.9 Frequently asked questions (FAQ) and exampleso it e
1.10 MODELLER updates ot i i e e e e e e e e e e e e e e
1.10.1 Major changesin Releases 5and 6o oo

1.10.2 Detailed chronological listing of some changes since MODELLER-4 release on 17 June, 1997 . .

2 MODELLER commands

2.1 Miscellaneous rules and features of MODELLER
2.1.1 MODELLER SYStEIM & . ot ittt et e e e e e e e e e e e e e e e e e e e
2.1.2 Running MODELLER SCTipts o 0 o i it
2.1.3 Controlling breakpoints and the amount of output
2.1.4 Filenaming L e e e e e e

iii

xiii

XV

10
12
12
12
12
13
13
13
14
15
15
16
16
17
18
29
29
29

iv

CONTENTS

2.1.5 Filetypes o o e e 36
2.1.6 Format of the command description Lo 36
2.2 Stereochemical parameters and molecular topology L. 38
2.2.1 Modeling residues with non-existing or incomplete entries in the topology and parameter
libraries L e e e e 38
2.2.2 READ_RESTYP_LIB — read residue type library 39
2.2.3 READ_TOPOLOGY — read residue topology library 39
2.24 READ_PARAMETERS — read parameters library 39
2.2.5 READ_ATOM_CLASS — read classification of atom types 40
2.2.6 GENERATE_TOPOLOGY — generate MODEL topology 40
2.2.7 PATCH — patch MODEL topology it ittt 41
2.2.8 PATCH_SS_.TEMPLATES — guess MODEL disulfides from templates 42
2.2.9 PATCH_SS_MODEL — guess MODEL disulfides from model structure 44
2.2.10 MUTATE_MODEL — mutate selected MODEL residues 44
2.2.11 MAKE_TOPOLOGY_-MODEL — make a subset topology library 45
2.2.12 WRITE_TOPOLOGY _MODEL — write residue topology library 46
2.3 Handling of atomic coordinates L 47
2.4 Comparison and searching of sequences and structures oL, 48
2.4.1 Alignment file format Lo 48
2.4.2 READ_ALIGNMENT — read sequences and/or their alignment 50
2.4.3 READ_ALIGNMENT2 — read 2nd alignment 51
244 CHECK_ALIGNMENT — check alignment for modeling 51
2.4.5 COLOR_ALN_MODEL — color MODEL according to alignment 52
2.4.6 COMPARE_ALIGNMENTS — compare two alignments 53
2.4.7 SEQUENCE_TO-ALI — copy MODEL sequence and coordinates to alignment 53
2.4.8 WRITE_ALIGNMENT — write sequences and/or their alignment 54
2.4.9 DESCRIBE — describe proteins o e e 55
2.4.10 ID_TABLE — calculate percentage sequence identities 56
2.4.11 SEQUENCE_COMPARISON — compare sequences in alignment 56
2.4.12 DENDROGRAM — clustering 57
2.4.13 PRINCIPAL_.COMPONENTS — clustering 57
2.4.14 ALIGN — align two (blocks of) sequences 58
2.4.15 ALIGN2D — align sequences with structures 59
2.4.16 MALIGN — align two Or mMOIre SeqUENCES « « v v v v v v vt e e e e e e e e e e e 61
2.4.17 ALIGN_CONSENSUS — consensus sequence alignment 62
2.4.18 SUPERPOSE — superpose MODEL2 on MODEL given alignment 63
2.4.19 COMPARE — compare 3D structures given alignment 65
2.4.20 ALIGN3D — align two structures i 66
2.4.21 MALIGN3D — align two or more structures 68
2.4.22 EXPAND_ALIGNMENT — put all models into alignment 70
2.4.23 SEQUENCE_SEARCH — search for similar sequences 70
2.4.24 DELETE_ALIGNMENT — delete alignment 72
2.4.25 SEGMENT_MATCHING — align segments 73

2.5 Calculation of spatial restraints e e e e e e e e e e e 75

CONTENTS v

2.5.1 Specification of restraints L. e e 75
2.5.2 Specification of pseudo atoms L. Lo 76
2.5.3 MAKE RESTRAINTS — make restraints vt 80
2.5.4 DEFINE.SYMMETRY — define similar segments 84
2.5.5 PICK_RESTRAINTS — pick restraints for selected atoms 86
2.5.6 CONDENSE_RESTRAINTS — remove unselected restraints 87
2.5.7 ADD_RESTRAINT — add restraint ittt et 88
2.5.8 DELETE_RESTRAINT — unselect restraint 89
2.5.9 REINDEX RESTRAINTS — renumber MODEL2 restraints for MODEL 89
2.5.10 SPLINE_RESTRAINTS — approximate restraints by splines 90
2.5.11 READ _RESTRAINTS — read spatial restraints 90
2.5.12 WRITE_RESTRAINTS — write spatial restraints 91

2.6 Optimization of the model 0 L 92
2.6.1 MAKE SCHEDULE — create optimization schedule 92
2.6.2 READ_SCHEDULE — read optimization schedule 93
2.6.3 WRITE_SCHEDULE — write optimization schedule 93
2.6.4 ENERGY — evaluate MODEL given restraints v v v v v .. 94
2.6.5 OPTIMIZE — optimize MODEL given restraints 96
2.6.6 SWITCH_TRACE — open new optimization trace file 100
2.6.7 DEBUG_FUNCTION — test code self-consistency 101

3 MODELLER scripts 103
3.1 Flowchart of comparative modeling by MODELLERo v i i i v i e e e e 103
3.2 Script for comparative modeling 105
3.3 Script for modeling of loops L e e e 108
4 Tor, MODELLER scripting language 111
5 Methods 113
5.1 Dynamic programming for sequence and structure comparison and searching 113
5.1.1 Pairwise comparison L Ll L Lo 113
5.1.2 Variable gap penalty L e e 114
5.1.3 Local versus global alignment o 114
5.1.4 Similarity versus distance scores oL o L e e 115
5.1.5 Multiple comparisons L. L e e e e e e e 115

5.2 Optimization of the objective function by MODELLER 115
5.2.1 Function L e e e e e 115
5.2.2 Optimizers o e e e e e e e e e 116

5.3 Equations used in the derivation of the molecular pdf 0. 117
5.3.1 Features and their derivatives Lo e 117
5.3.2 Restraints and their derivatives oL Lo 119

5.4 List of commands, arguments, and default values o L. 123

vi

CONTENTS

List of Figures

1.1 Comparative protein modeling by satisfaction of spatial restraints.
1.2 Sample spatial restraint. Lo e e e e e e e e

1.3 Optimization of the objective function. e

vii

11
11

viii LIST OF FIGURES

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1

List of file types.« . e e e e e 37
List of mathematical forms of restraints. e e e 78
List of feature types that can be restrained. 79
List of “physical” restraint types. i i e e e e e e e e e e e e e e e e e e 79
Columns in an optimization trace file. L 101
List of MODELLER SCTIPES. . . .« o o i i i it e i e e e e e e e e e e e e 103

ix

LIST OF TABLES

Copyright notice

MODELLER, a protein structure modeling program.
Copyright © 1989-2000 Andrej Sali.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied
warranty of merchantability or fitness for any purpose. The entire risk as to the quality and performance of the
program is with you.

Distribution of the program is allowed only with the author’s written consent.

xi

xii COPYRIGHT NOTICE

Acknowledgments

I am grateful to my PhD supervisor Professor Tom L. Blundell in whose laboratory at Birkbeck College the program
was initiated.

I would also like to thank Professor Martin Karplus who allowed some of the data in the CHARMM topology and
library files to be used with MODELLER.

I am in debt to the MODELLER users for their constructive criticisms and suggestions.

MODELLER was written when at

1989-1990: Department of Crystallography, Birkbeck College
University of London, Malet St, London WC1E 7HX, UK.

1990-1991: ICRF Unit of Structural Molecular Biology, Birkbeck College
Malet St, London WC1E 7HX, UK.

1991-1994: Department of Chemistry, Harvard University
12 Oxford St, Cambridge, MA 02138, USA.

1995—: The Rockefeller University,
1230 York Ave, New York, NY 10021, USA.

xiii

xiv ACKNOWLEDGMENTS

Chapter 1

Introduction

1.1 What is MODELLER?

MODELLER is a computer program that models 3D structure of proteins by satisfaction of spatial restraints.

MODELLER is most frequently used for homology or comparative protein structure modeling: The user provides
an alignment of a sequence to be modeled with known related structures and MODELLER will automatically calculate
a model with all non-hydrogen atoms.

More generally, the input to the program are restraints on the spatial structure of the amino acid sequence(s) and
ligands to be modeled. The output is a 3D structure that satisfies these restraints as well as possible. Restraints can
in principle be derived from a number of different sources. These include related protein structures (comparative
modeling), NMR experiments (NMR refinement), rules of secondary structure packing (combinatorial modeling),
cross-linking experiments, fluorescence spectroscopy, image reconstruction in electron microscopy, site-directed
mutagenesis, intuition, residue-residue and atom—atom potentials of mean force, etc. The restraints can operate
on distances, angles, dihedral angles, pairs of dihedral angles and some other spatial features defined by atoms or
pseudo atoms. Presently, MODELLER automatically derives the restraints only from the known related structures
and their alignment with the target sequence.

A 3D model is obtained by optimization of a molecular probability density function (pdf). The molecular pdf
for comparative modeling is optimized with the variable target function procedure in Cartesian space that employs
methods of conjugate gradients and molecular dynamics with simulated annealing.

MODELLER can also perform multiple comparison of protein sequences and/or structures, clustering of proteins,
and searching of sequence databases. The program is used with a scripting language and does not include any
graphics. It is written in standard FORTRAN 90 and is meant to run on a UNIX computer.

CHAPTER 1. INTRODUCTION

1.2 MODELLER bibliography

More information about MODELLER and its applications can be found in the following sources:

10.

11.

12.

13.

14.

15.

16.

17.

. Sali, A. and Blundell, T. L. Definition of general topological equivalence in protein structures: A procedure

involving comparison of properties and relationships through simulated annealing and dynamic programming.
J. Mol. Biol. 212, 403-428 (1990).

. Sali, A., Overington, J. P., Johnson, M. S., and Blundell, T. L. From comparisons of protein sequences and

structures to protein modelling and design. TIBS 15, 235-240 (1990).

Johnson, M. S., Sali, A., and Blundell, T. L. Phylogenetic relationships from three-dimensional protein
structures. Meth. Enzymol. 183, 670-690 (1990).

. Johnson, M. S., Overington, J. P., and Sali, A. Knowledge-based protein modelling: Human plasma kallikrein

and human neutrophil defensin. In Current Research in Protein Chemistry: Techniques Structure and Func-
tion, Villafranca, J. J., editor, 567-574. Academic Press, Inc., San Diego (1990).

Sali, A. Modelling three-dimensional structure of proteins from their sequence of amino acid residues. PhD
thesis, University of London, London, (1991).

Sali, A. and Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.
234, 779-815 (1993).

Sali, A., Matsumoto, R., McNeil, H. P., Karplus, M., and Stevens, R. L. Three-dimensional models of four
mouse mast cell chymases. Identification of proteoglycan-binding regions and protease-specific antigenic
epitopes. J. Biol. Chem. 268, 9023-9034 (1993).

Sali, A. and Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. In Protein
Structure by Distance Analysis, Bohr, H. and Brunak, S., editors, 64-86. IOS Press, Amsterdam (1994).

Sali, A. and Overington, J. Derivation of rules for comparative protein modeling from a database of protein
structure alignments. Protein Sci. 3, 1582-1596 (1994).

Sali, A. MODELER: Implementing 3D protein modeling. In m¢?, volume 2, 5. Molecular Simulations Inc.,
Burlington, MA (1995).

Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M., and Stevens, R. L. Packaging of proteases and proteo-
glycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines in mouse mast cell
protease-7 regulates its binding to heparin serglycin proteoglycan. J. Biol. Chem. 270, 19524-19531 (1995).

Sali, A. Protein modeling by satisfaction of spatial restraints. Molecular Medicine Today 1, 270-277 (1995).

Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., and Karplus, M. Evaluation of comparative protein
structure modeling by MODELLER. Proteins 23, 318-326 (1995).

Sali, A. Modelling mutations and homologous proteins. Curr. Opin. Biotech. 6, 437-451 (1995).

Sheng, Y., Sali, A., Herzog, H., Lahnstein, J., and Krilis, S. Modelling, expression and site-directed mutage-
nesis of human fs-glycoprotein I: Identification of the major phospholipid binding site. J. Immunol. 157,
3744-3751 (1996).

Ghildyal, N., Friend, D. S., Stevens, R. L., Austen, K. F., Huang, C., Penrose, J., Sali, A., and Gurish, M. F.
Fate of two mast cell tryptases following passive systemic anaphylaxis of BALB/c and V3 mastocytosis mice.
Prolonged retention of exocytosed mMCP-6 in connective tissues and rapid accumulation of enzymatically
active mMCP-7 in the blood chymases. J. Exp. Med. 184, 1061-1073 (1996).

Xu, L. Z., Sanchez, R., Sali, A., and Heintz, N. Ligand specificity of brain lipid binding protein. J.Biol. Chem.
271, 24711-24719 (1996).

1.2.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

MODELLER BIBLIOGRAPHY 3

Wu, S., de Lencastre, H., Sali, A., and Tomasz, A. A phosphoglucomutase-like gene essential for the opti-
mal expression of methicillin resistance in Staphylococcus aureus: Molecular cloning and DNA sequencing.
Microbial Drug Resistance 2, 277-286 (1996).

Huang, C., Wong, G. W., Ghildyal, N., Gurish, M. F., Sali, A., Matsumoto, R., Qiu, W.-T., and Stevens,
R. L. The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity ¢n vivo and in wvitro due to
its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J. Biol.
Chem. 272, 31885-31893 (1997).

Sanchez, R. and Sali, A. Comparative protein modeling as an optimization problem. Journal of Molecular
Structure (Theochem) 398, 489-496 (1997).

Sanchez, R. and Sali, A. Advances in comparative protein-structure modeling. Curr. Opin. Struct. Biol. 7,
206-214 (1997).

Koulich, D., Orlova, M., Malhotra, A., Sali, A., Darst, S. A., and Borukhov, S. Domain organization of
Escherichia coli transcript cleavage factors GreA and GreB. J. Biol. Chem. 272, 7201-7210 (1997).

Hunt, J. E., Friend, D. S., Gurish, M. F., Feyfant, E., Sali, A., Huang, C., Ghildyal, N., Stechshulte, S.,
Austen, K. F., and Stevens, R. L. Mouse mast cell protease (mMCP) 9, a novel member of the chromosome
14 family of serine proteases that is selectively expressed in uterine mast cells. J. Biol. Chem. 46, 29158-
29166 (1997).

Sanchez, R. and Sali, A. Evaluation of comparative protein structure modeling by MODELLER-3. Proteins
Suppl. 1, 50-58 (1997).

Guenther, B., Onrust, R., Sali, A., O’Donnell, M., and Kuriyan, J. Crystal structure of the §’ subunit of the
clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335-345 (1997).

Sanchez, R., Badretdinov, A. Y., Feyfant, E., and Sali, A. Homology protein structure modeling. Transactions
Amer. Cryst. Assoc. 32, 81-91 (1997).

Sanchez, R. and Sali, A. Comparative protein structure modeling: Introduction and practical examples
with MODELLER. In Protein Structure Prediction: Methods and Protocols, Webster, D. M., editor, 97-129.
Humana Press (2000).

Huang, C., Sali, A., and Stevens, R. L. Regulation and function of mast cell proteases in inflammation. J.
Clin. Immunol. 18, 169-183 (1998).

Kandiah, D. A., Sali, A., Sheng, Y., Victoria, E. J., Marquis, D. M., Coutts, S. M., and Krilis, S. Current
insights into the antiphospholipid syndrome: Clinical, immunological and molecular aspects. Adv. Immunol.
70, 507-563 (1998).

Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., and Burley, S. K. Crystal structure of a GCN5-
related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 51-61 (1998).

Sanchez, R. and Sali, A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome.
Proc. Natl. Acad. Sci. USA 95, 13597-13602 (1998).

Sali, A. 100,000 protein structures for the biologist. Nat. Struct. Biol. 5, 1029-1032 (1998).

Sanchez, R. and Sali, A. MODBASE : A database of comparative protein structure models. Bioinformatics
15, 1060-1061 (1999).

Fiser, A., Sanchez, R., Melo, F., and Sali, A. Comparative protein structure modeling. In Computational
Biochemistry and Biophysics, in press, Watanabe, M., Roux, B., MacKerell, A., and Becker, O., editors.
Marcel Dekker (2000).

Sanchez, R. and Sali, A. Comparative protein structure modeling in genomics. J. Comp. Phys. 151, 388-401
(1999).

Wu, G., Fiser, A., ter Kuile, B., Sali, A., and Miiller, M. Convergent evolution of Trichomonas vaginalis
lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. USA 96, 62856290 (1999).

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

CHAPTER 1. INTRODUCTION

Nagata, T., Gupta, V., Kim, W.-Y., Sali, A., Chait, B. T., Shigesada, K., Ito, Y., and Werner, M. H.
Immunoglobulin motif DNA recognition and heterodimerization for the PEBP2/CBF Runt—domain. Nat.
Str. Biol. 6, 615-619 (1999).

Miwa, J. M., Ibanez-Tallon, I., Crabtree, G. W., Sanchez, R., Sali, A., Role, L. W., and Heintz, N. lynx1,
an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23,
105-114 (1999).

Huang, C., Morales, G., Vagi, A., Chanasyk, K., Ferrazzi, M., Burklow, C., Qiu, W. T., Feyfant, E., Sali, A.,
and Stevens, R. L. Formation of enzymatically active, homotypic and heterotypic tetramers of mouse mast
cell tryptases. J. Biol. Chem. 275, 351-358 (2000).

Wong, G. W., Tang, Y., Feyfant, E., Sali, A., Huang, C., and Stevens, R. L. Identification of a new tryptase
in mice and humans which possesses a novel C-terminal, membrane spanning segment. J. Biol. Chem. 274,
30784-30793 (1999).

Wu, G., Morrison, H. G., Fiser, A., McArthur, A. G., Sali, A., Sogin, M. L., and Miiller, M. Core histones of
the amitochondriate protist, Giardia lamblia. Mol. Biol. Evol. 17, 1156-1163 (2000).

Burley, S. K., Almo, S. C., Bonanno, J. B., , Capel, M., Chance, M. R., Gaasterland, T., Lin, D., Sali, A.,
Studier, F. W., and Swaminathan, S. Structural genomics: beyond the Human Genome Project. Nat. Genet.
23, 151-157 (1999).

Marti-Renom, M. A., Stuart, A., Fiser, A., Sanchez, R., Melo, F., and Sali, A. Comparative protein structure
modeling of genes and genomes. Ann. Rev. Biophys. Biomolec. Struct. 29, 291-325 (2000).

Sanchez, R., Pieper, U., Mirkovi¢, N., de Bakker, P. I. W., Wittenstein, E., and Sali, A. MODBASE, a database
of annotated comparative protein structure models. Nucl. Acids Res. 28, 250-253 (2000).

Sali, A. and Kuriyan, J. Challenges at the frontiers of structural biology. Trends Biochem. Sci. 22, M20-M24
(1999).

Pieper, U., Eswar, N., Sénchez, R., Mirkovi¢, N., Lane, W., Sammut, M., John, B., and Sali, A. MODBASE,
a database of annotated comparative protein structure models. Nucl. Acids Res. , in press (2001).

Groft, C. M., Beckmann, R., Sali, A., and Burley, S. K. Crystal structures of ribosome anti-association factor
IF6. Nat. Struct. Biol. 7, 1156-1164 (2000).

Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M., Madhusudhan, M., Mirkovi¢, N., and Sali,
A. Protein structure modeling for structural genomics. Nat. Struct. Biol. 7, 986-990 (2000).

Fiser, A., Do, R. K. G., and Sali, A. Modeling of loops in protein structures. Protein Science 9, 1753-1773
(2000).

Please quote A. Sali and T. L. Blundell, “Comparative protein modelling by satisfaction of spatial restraints” J.
Mol. Biol. 234, 779-815 (1993) in your publications using MODELLER.

I will greatly appreciate it you send me copies of any papers using MODELLER to

Andrej Sali

The Rockefeller University
1230 York Avenue

New York, NY 10021-6399

USA

tel +1 212 327 7550

fax +1 212 327 7540

email sali@rockefeller.edu

URL http://guitar.rockefeller.edu/

1.3. DISTRIBUTION 5

1.3 Distribution

MODELLER is available free of charge to academic non-profit institutions.

First, please use the MODELLER home page at http://guitar.rockefeller.edu/modeller /modeller.html or the anony-
mous ftp account, in directory pub/modeller, on guitar.rockefeller.edu (IP 129.85.13.195) to obtain at least
(modeller6a-data.tar.Z), and an executable for each machine type that you want to use (mod6a_x) (see file
INSTALLATION). Next, please access the academic license server from the MODELLER home page to apply for the
MODELLER key that has to be assigned to the environment variable KEY_ MODELLERSG in your login script (.cshrc).
See file INSTALLATION for installation instructions.

There is a MODELLER users email list. You can access it from the MODELLER home page or subscribe to it directly
by sending an email message with the word “subscribe” in its body to modeller usage@guitar.rockefeller.edu.

A graphical interface to MODELLER is available as part of QUANTA, INSIGHTII, and WEBLAB GENEEXPLORER,
interactive molecular modeling programs from MSI, San Diego, with many tools for protein modeling and structural
analysis. QUANTA, INSIGHTII and GENEEXPLORER facilitate preparation of input files for MODELLER (e.g., an
alignment file) as well as an analysis of results (e.g., an evaluation of the models). If you are interested in these
programs, please contact

Dr. David Edwards
Molecular Simulations Inc.
9685 Scranton Road

San Diego, CA 92121-3752
USA

tel +1-858-799-5374

fax +1-858-458-0136

email dje@msi.com

URL http://www.msi.com/

6 CHAPTER 1. INTRODUCTION

1.4 Installation

The following installation instructions are from the INSTALLATION file in the root directory of the MODELLER
distribution. See Section 1.3 for how to obtain MODELLER.

INSTALLATION

MODELLER 6v0

Copyright(c) 1989-2001 Andrej Sali
A1l Rights Reserved

**x PLATFORMS

MODELLER is written in Fortran 90 and runs on Silicon Graphics under IRIX,
on Sun workstation under Solaris, IBM under AIX, on DEC Alphas and Pentium
PC’s under Linux.

*% INSTALLATION

See file modeller.README for information about how to get MODELLER. The
source code is not generally available. Hence, most users are limited to
the compiled versions of MODELLER. Program is distributed as a single
compressed tar archive (modeller6v0.tar.Z) that contains scripts,
libraries, examples, documentation (in PDF and HTML formats) and
executables for different platforms and operating systems.

1) Download modeller6v0.tar.Z file into the desired directory
on your computer.

2) TUnpack the file:

uncompress modeller6v0.tar.Z
tar xvf modeller6v0.tar

The result of unpacking will be directory ./modeller6v0
(next to the modeller6v0.tar.Z file) with the following
uncompressed files and directories:

doc/ MODELLER documentation directory

examples/ directory containing examples and tutorials
Install installation script

INSTALLATION this file

modeller .README file describing distribution and registration
modlib/ libraries and data files for the program
scripts/ script files used to compile and use MODELLER

src/ directory with executables

1.4. INSTALLATION

3) Go to the ./modeller6v0 directory and run the installation script
./Install

Answer several questions as prompted. If you make a mistake,
you can re-run the script.

4) If the script installation was successful you may stop here.
Otherwise you have to install MODELLER manually as described
below.

5) Include into your login script the lines below. Edit them
appropriately to suit your system. In case of csh or tcsh
the login script is ".cshrc" (you can generally find your
current shell by typing ’echo $shell’).

HHHH R R
this is a location of the modeller6v0 directory
(i.e where you unpacked tar.Z file)

setenv MODINSTALL6vO /usr/local/modeller/modeller6v0

please comment out those that don’t apply to you:
setenv EXECUTABLE_TYPE6vO 1i386-absoft # for Linux

setenv EXECUTABLE_TYPE6vO irisé4d # for SGI
setenv EXECUTABLE_TYPE6vO sun4 # for SUN
setenv EXECUTABLE_TYPE6vO alpha # for DEC Alpha
setenv EXECUTABLE_TYPE6vO rs6000 # for IBM

setenv LIBS_LIB6vO
$MODINSTALL6vO/modlib/1libs.1lib

replace KEY_MODELLER with the Modeller key you obtained
after signing the online license agreement

setenv KEY_MODELLER6vO

set path=($path $MODINSTALL6vO/bin)
limit stacksize unlimited

HEHFH S H R R SR R R R R R R

6) Source the login script by executing the command:

source ~/.cshrc

5) Install the program:

a) change directory:
cd $MODINSTALL6vO/src/main

CHAPTER 1. INTRODUCTION

b) execute command:
make install

For additional information visit our web site:
http://guitar.rockefeller.edu

Sincerely,
Modeller Team
December, 2001.

1.5. BUG REPORTS 9

1.5 Bug reports

Please report MODELLER bugs by e-mail to the MODELLER users list at modeller usage@guitar.rockefeller.edu.
It is best if you e-mail an uuencoded compressed tar archive of the directory with all input and output files:

tar cvf name.tar ./directory_name

compress name.tar

uuencode name.tar.Z name.tar.Z > name.uue

mail -s ’MODELLER bug’ modeller_usage@guitar.rockefeller.edu < name.uue

If the problem is not apparent in the log files, please include in the archive a README file with a short description
of the problem.

10 CHAPTER 1. INTRODUCTION

1.6 Method for comparative protein structure modeling by MODELLER

MODELLER implements an automated approach to comparative protein structure modeling by satisfaction of spatial
restraints (Figure 1.1) [?]. The method and its applications to biological problems are described in detail in
references listed in Section 1.2. Briefly, the core modeling procedure begins with an alignment of the sequence
to be modeled (target) with related known 3D structures (templates). This alignment is usually the input to the
program. The output is a 3D model for the target sequence containing all mainchain and sidechain non-hydrogen
atoms. Given an alignment, the model is obtained without any user intervention. First, many distance and dihedral
angle restraints on the target sequence are calculated from its alignment with template 3D structures (Figure 1.2).
The form of these restraints was obtained from a statistical analysis of the relationships between many pairs of
homologous structures. This analysis relied on a database of 105 family alignments that included 416 proteins with
known 3D structure [?]. By scanning the database, tables quantifying various correlations were obtained, such as
the correlations between two equivalent C, — C,, distances, or between equivalent mainchain dihedral angles from
two related proteins. These relationships were expressed as conditional probability density functions (pdf’s) and
can be used directly as spatial restraints. For example, probabilities for different values of the mainchain dihedral
angles are calculated from the type of a residue considered, from mainchain conformation of an equivalent residue,
and from sequence similarity between the two proteins. Another example is the pdf for a certain C,—C, distance
given equivalent distances in two related protein structures (Figure 1.2). An important feature of the method is
that the spatial restraints are obtained empirically, from a database of protein structure alignments. Next, the
spatial restraints and CHARMM energy terms enforcing proper stereochemistry [?] are combined into an objective
function. Finally, the model is obtained by optimizing the objective function in Cartesian space. The optimization
is carried out by the use of the variable target function method [?] employing methods of conjugate gradients
and molecular dynamics with simulated annealing (Figure 1.3). Several slightly different models can be calculated
by varying the initial structure. The variability among these models can be used to estimate the errors in the
corresponding regions of the fold.

There are additional specialized modeling protocols, such as that for the modeling of loops (Section 3.3).

3D GRI SFFEDAGF- GHCYECSSDC- NLQP
1. ALIGN SEQUENCE
3D &Kl TFYEDRGFQGHCYECSSDC- NLQP
SEQ &Kl TFYEDRG- - - RCYECSSDCPNL QP

Leett (S [e)
2. EXTRACT SPATIAL e
<F) @,

RESTRAINTS: \ e,

- 0\{‘ ------ é\D R.(.-?' ez

=

el O

‘ i

3. SATISFY SPATIAL
RESTRAINTS:

Figure 1.1: Comparative protein modeling by satisfaction of spatial restraints. First, the known, template 3D structures
(‘3D’) are aligned with the target sequence to be modeled (‘SEQ’) Second, spatial features, such as C,—C, distances, hydrogen
bonds, and mainchain and sidechain dihedral angles, are transferred from the templates to the target. Thus, a number of
spatial restraints on its structure are obtained. Third, the 3D model is obtained by satisfying all the restraints as well as
possible.

1.6. METHOD FOR COMPARATIVE PROTEIN STRUCTURE MODELING BY MODELLER 11

4E6

w

m

o)
-
D)

FREQUENCY
)
m
o

1E6 A

oA L LN L LIAT LT L
15 17 19 21 23 25
C, - C, DISTANCE Al

Figure 1.2: Sample spatial restraint. A restraint on a given Co—C, distance, d, is expressed as a conditional probability
density function that depends on two other equivalent distances (d' = 17.0 and d" = 23.5): p(d/d’,d"). The restraint
(continuous line) is obtained by least-squares fitting a sum of two Gaussian functions to the histogram, which in turn is
derived from the database of alignments of protein structures. In practice, more complicated restraints are used that depend
on additional information, such as similarity between the proteins, solvent accessibility, and distance from a gap in the
alignment [?].

AR t

= 0 340 770 1190 1660 1810 6750

S 8000

5 i

> 6000

o]]

|1

w4000

> i

5 2000 A

w]

bar]

2 0 —_—
0 1000 2000 3000 4000 5000 6000 7000

ITERATION

Figure 1.3: Optimization of the objective function. Optimization of the objective function (curve) starts with a distorted
average of template structures (not with an extended structure as shown here). The iteration number is indicated below
each sample structure. In this run, the first ~ 2,000 iterations correspond to the variable target function method relying
on the conjugate gradients technique. This approach first satisfies sequentially local restraints and slowly introduces longer
range restraints until the complete objective function is optimized. In the last 4,750 iterations for this model, molecular
dynamics with simulated annealing is used to refine the model. Typically, a model is calculated in the order of minutes on
a PC workstation.

12 CHAPTER 1. INTRODUCTION

1.7 Comparative protein modeling primer

This section outlines all the stages in a comprehensive comparative modeling session. In contrast, the tutorial section
(Section 1.8) describes a hands-on example illustrating a very simple modeling case. Many “frequently-asked-
questions” (FAQ) are answered in Section 1.9. An introductory, hands-on primer to comparative modeling with
several MODELLER examples can be found in ?. With a convenient structure display and manipulation program, it
should be possible to do even the difficult modeling cases in only a few days. To find sample script files for all the
MODELLER tasks discussed in this section, read file examples/all-steps/README. To obtain additional examples
of TOP scripts using a certain command, explore the examples directory, especially the examples/commands sub-
directory.

1.7.1 Finding structures and sequences related to the target sequence

Before any modeling can begin, the sequences and segments with known 3D structures that are related to the
sequence being modeled must be found. This can be achieved by the MODELLER SEQUENCE_SEARCH
command. The search relies on a database of structures that are representative [?] of the whole Protein Data
Bank (PDB) [?,?7]. The PDB codes of these representative structures (about 3,000 codes) are listed in file
modlib/CHAINS 3.040_XN.cod and their sequences are stored in file mod1ib/CHAINS all.seq, which includes
approximately 16,000 sequences for all the unique non-model chains in PDB longer than 25 amino acid residues.
The representative structures are likely to have less than 40% sequence identity to each other and the length
difference that is at least 30% of the shorter chain or 30 amino acid residues, whichever is smaller. The codes
of other known PDB structures related to the representative structures at >40% sequence identity are listed
in file mod1ib/CHAINS 3.0 40 XN.grp. A sample ToOP script for searching by SEQUENCE_SEARCH is in
examples/all-steps/search.top. Sequences related to the target are identified by their Z-scores that are larger
than 4 or 5 (log file column SIGNIF).

For more difficult modeling problems when SEQUENCE_SEARCH does not find any homologs, template
matching or threading methods can be used. Widely used programs for threading include PROFIT [?], THREADER
[?], and the Web server of the David Eisenberg group at UCLA (http://www.mbi.ucla.edu/people/frsvr/frsvr).

It may be beneficial to identify related sequences without known 3D structures at this stage. This is most
conveniently achieved by PSI-BLAST [?]. Using as many sequences as possible may improve the quality of the
alignment prepared in the next two stages.

1.7.2 Preparing an initial family alignment of all structures and sequences

The second stage is to prepare a multiple alignment of all the structures and sequences in the family of interest.
An initial structural alignment of the structures can be obtained by the MODELLER’S MALIGN3D command. A
very robust protein structure alignment program is CE [?]. It is usually better to include all the structures related
to the representative PDB structures, as listed in the mod1ib/CHAINS_3.0_40_XN.grp file. Using the ALIGN2D,
ALIGN or MALIGN commands, the multiple structural alignment can then be aligned as one block with all the
related sequences. Unfortunately, in most cases, automatically derived alignments have to be manually edited to
optimize the quality of the model derived from the alignment. This is the task for the next stage.

1.7.3 Becoming familiar with the family fold and improving the alignment

This is a very important stage because it may result in a significantly improved model. It mostly involves visual in-
spection of the superposed structures on a graphics terminal, using a program such as RAsMoL (Roger Sayle, Glaxo,
http://www.umass.edu/microbio/rasmol/), QUANTA or INSIGHTII. However, the CHECK_ALIGNMENT
command of MODELLER should also be used. You can obtain files with multiply superposed structures by using
the MALIGN3D command with WRITE_FIT set to on (you can use any alignment for this purpose). The aim at
this stage is to study the family fold, to establish the relationships between various members of the family, and
to determine which regions are more conserved and which regions are more variable. This information is used
to improve the initial automatically derived alignment. For example, if necessary, gaps are removed from helices
and strands; they should be moved into those exposed regions that show large variations in the family of known
structures and to the tips of loops. The role of disulfides and cis-prolines, if any, is noted. MODELLER will try to

1.7. COMPARATIVE PROTEIN MODELING PRIMER 13

deal with those two features automatically but it is prudent to be careful. It has to be decided whether or not to
build models for multi-subunit assemblies and whether or not to include various ligands, such as water molecules,
cofactors, metal ions, inhibitors, or substrates. QUANTA and INSIGHTII have a set of tools that facilitate inspection
and editing of multiple alignments.

In order to obtain the best possible model, it is very important to understand how the alignment is used by
MODELLER [?]. In outline, for the aligned regions, MODELLER tries to derive a 3D model for the target sequence
that is as close to one or the other of the template structures as possible while also satisfying stereochemical
restraints (e.g., bond lengths, angles, non-bonded atom contacts, . ..); the inserted regions, which do not have any
equivalent segments in any of the templates, are modeled in the context of the whole molecule, but using their
sequence alone. This way of deriving a model means that whenever a user aligns a target residue with a template
residue, he tells MODELLER to treat the aligned residues as structurally equivalent.

1.7.4 Selecting the templates

The new improved alignment is input to the ID_TABLE or COMPARE_SEQUENCES commands to construct
a matrix of pairwise sequence distances. This matrix is then used either to prepare an ‘evolutionary’ tree for the
whole family or to cluster the proteins by the principal components technique available through the PRINCI-
PAL_COMPONENTS command of MODELLER. For evolutionary trees, the DENDROGRAM command of
MODELLER or the PHYLIP program written by Joe Felsenstein can be used (you can get PHYLIP by anonymous FTP
from evolution.genetics.washington.edu/pub/phylip) [?]. The clustering is then examined to decide which
known structures are suitable templates for model building in the next stage. Usually, all significantly different
structures in the cluster that contains the target sequence are used. It is not always best to use all related 3D
structures as templates because the objective function may become too rugged, sometimes resulting in sub-optimal
solutions (e.g., six templates is a large number of templates). It also does not make sense to include two relatively
similar templates solved at a high and low resolution; use only the high resolution template. Depending on the
modeling problem at hand, other factors can be considered in the selection of templates, such as ligands bound
to the template and/or target, whether the template structure was solved in solution or in a crystal, ete. More-
over, more experienced users can try to use a smaller number of templates for mainchain distance restraints and a
larger number of templates for sidechain conformation, but that involves editing the TOP scripts for comparative
modeling. Also, templates can be very short, such as loops from unrelated protein structures that fit on the given
framework regions; for example, canonical loops [?] could be used as templates in modeling a complementarity
determining region of an immunoglobulin. However, MODELLER’s ab initio loop modeling facility is the preferred
way to model loops (Section 3.3).

1.7.5 Model building

The alignment and the list of templates are used by MODELLER to derive several slightly different models automat-
ically. This stage is straightforward and is described in the tutorial (Section 1.8). However, do check the log file
for error messages by searching for the ‘_E>’ string. Usually, the representative model is that which has the lowest
value of the molecular pdf. If the models are constructed by the standard procedure, this value is reported in the
log file as well as in the REMARK record of the output PDB files with the models.

1.7.6 Evaluating the models

The model is evaluated internally and externally. The internal self-consistency check is that the model has to satisfy
most restraints used to calculate it, especially the stereochemical restraints. If some restraints are grossly violated in
all the models it is likely that the alignment in the corresponding region is incorrect. The restraint violations are re-
ported by the ENERGY command and can be found at the end of the log file. External tests include programs such
as PROCHECK by Roman Laskowski and Janet Thornton (anonymous FTP at ftp.biochem.ucl.ac.uk) [?], the
EEF1 web server by Themis Lazaridis (http://mingus.sci.ccny.cuny.edu/server/) and various 3D profile tests
including the PROFILE3D program written in the David Eisenberg group (e-mail david@uclaue.mbi.ucla.edu) [?]
and PROSAII written in the Manfred Sippl group (anonymous FTP at gundi.came.sbg.ac.at) [?]. QUANTA and
INSIGHTII also offer various test options.

Tt is useful to compare the models among themselves because those regions that are most variable are also likely

14 CHAPTER 1. INTRODUCTION

to be most in error. Another useful comparison is between the representative model and the templates. Start by
comparing the C, traces, then continue with the backbone comparison and finally include the sidechains.

The aim of evaluations is to determine whether or not the model is acceptable. If it is not acceptable, that is
if the current model violates some restraints, fails the profile tests, or simply does not appear satisfactory, these
evaluations should help to re-align the target sequence and the templates for the next cycle of modeling. It may also
be that the model violates restraints because the optimizer did not find a good optimum of the objective function.
In such a case, you could make the optimization more thorough using options to the ‘model’ routine (Section 3.2).

1.7.7 Repeat the cycle

The cycle of template selection, alignment, modeling, and evaluation should be repeated until the model is good
enough or until no further improvement is possible.

1.8. TUTORIAL ON USING MODELLER FOR COMPARATIVE MODELING 15

1.8 Tutorial on using MODELLER for comparative modeling

This section is a ‘hands on’ description of the most basic use of MODELLER in comparative modeling. For an
outline of the main stages in comparative modeling, see Section 1.7. For “frequently-asked-questions” (FAQ), see
Section 1.9. An introductory, hands-on primer to comparative modeling with several MODELLER examples can be
found in ?.

The input are Protein Data Bank (PDB) atom files of known protein structures and their alignment with the
target sequence to be modeled. The output is a model for the target that includes all non-hydrogen atoms. Although
MODELLER can calculate sequence and structure alignments, it is better to prepare the alignment carefully by other
means. The alignment can also contain very short segments such as loops, secondary structure motifs, etc.

This tutorial assumes that MODELLER is already installed on your computer and that appropriate changes have
been made to your login script to install you as a MODELLER user. See Section 1.4 for more details on installation
(also in the INSTALLATION file in the MODELLER distribution directory).

1.8.1 Preparing input files

The sample input files in this tutorial can be found in the examples/tutorial-model directory of the MODELLER
distribution.

There are three kinds of input files: Protein Data Bank atom files with coordinates for the template structures,
the alignment file with the alignment of the template structures with the target sequence, and the MODELLER
command or script file that tells MODELLER what to do.

Atom files

Each atom file is named code.atm where code is a short protein code, preferably the PDB code; for example,
Peptococcus aerogenes ferredoxin would be in a file 1fdx.atm. The code must be used as that protein’s identifier
throughout the modeling. The atom sets do not have to be superposed by the user before comparative modeling is
done.

Alignment file

One of the formats for the alignment file is related to the PIR database format; this is the preferred format for
comparative modeling:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1l

structureX:5fd1l:1 : :106 : :ferredoxin:Azotobacter vinelandii: 1.90: 0.19
AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA
EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 : :b4 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
AYVINDSC--IACGACKPECPVNIIQGS—--IYAIDADSCIDCGSCASVCPVGAPNPED——---————————————

See Section 2.4.1 for a detailed description of the alignment file format and Section 1.7.3 for the meaning of
the alignment in MODELLER. Influence of the alignment on the quality of the model cannot be overemphasized.
Command CHECK_ALIGNMENT can be used to find some trivial alignment mistakes.

Script file

The script file contains commands for MODELLER, in the ToP language (Chapter 4). A sample script file
model-default.top to produce one model of sequence 1fdx from the known structure of 5fd1 and from the
alignment between the two sequences is

Homology modelling by the MODELLER TOP routine ’model’.

16 CHAPTER 1. INTRODUCTION

INCLUDE # Include the predefined TOP routines
SET OUTPUT_CONTROL =11 111 # uncomment to produce a large log file
SET ALNFILE = ’alignment.ali’ # alignment filename
SET KNOWNS = ’5fd1’ # codes of the templates
SET SEQUENCE = ’1fdx’ # code of the target
SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files
SET STARTING_MODEL= 1 # index of the first model
SET ENDING_MODEL = 1 # index of the last model
(determines how many models to calculate)
CALL ROUTINE = ’model’ # do homology modelling

See Section 3.2 for information on the model script and its arguments.

1.8.2 Running MODELLER
To run MODELLER with the script file model-default.top, execute the following command:
mod model-default

A number of intermediary files are created as the program proceeds. After about 30 seconds on a Pentium
ITI workstation, the final 1fdx model is written to file 1fdx.B99990001. Examine the model-default.log file for
information about the run. In particular, one should always check the output of the CHECK_ALIGNMENT
command, which you can find by searching for ‘chkaln’. Also, check for warning and error messages by searching
for ‘w>” and ‘_E>’, respectively. There should be no error messages; most often, there are some warning messages
that can usually be ignored.

1.8.3 Fully automated comparative modeling

Fully automated comparative modeling requires only the target sequence and the coordinates of templates. The
structural alignment of the known 3D structures and their alignment with the target sequence is derived auto-
matically. However, the single most important factor that determines the quality of a model is the quality of
the alignment. If the alignment is incorrect, the model will also be incorrect. For this reason, the fully
automated option for comparative modeling should not be used unless the sequences are so sim-
ilar that the calculated alignment is likely to be correct (this usually requires more than 50%
sequence identity). Instead, the alignment should be carefully inspected, optimized by hand, and checked by
the CHECK_ALIGNMENT command before used in modeling (Section 1.7). Moreover, several iterations of
alignment and modeling may be necessary in general. See Section 1.7 for an outline of a general comparative
modeling case.

The sample input files for fully automated comparative modeling are located in directory
examples/align-model-steps. The sample ToP file is

A sample TOP file for fully automated comparative modeling

INCLUDE # include MODELLER routines

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directory with input atom files
SET SEGFILE = ’alignment.seg’ # input file w/ templates and target
SET KNOWNS = ’5fd1’ ’1fdn’ ’1fxd’ ’2fxb’ # templates’ PDB codes

SET SEQUENCE = ’1fdx’ # target code

SET OUTPUT_CONTROL =1 111 2

CALL ROUTINE = ’full_homol’ # get alignment and a model

The alignment.seg file is

>P1;1fdx

1.8. TUTORIAL ON USING MODELLER FOR COMPARATIVE MODELING

structureX:1fdx:@:@:54:0@:ferredoxin:Peptococcus aerogenes: 2.00:-1.00
AYVINDSCIACGACKPECPVNIIQGSIYAIDADSCIDCGSCASVCPVGAPNPED*

>P1;1fdn

structureX:1fdn:@:@:55:@:ferredoxin:Clostrodium acidiurici: 1.84:-1.0
L3

>P1;5fd1

structureX:5£d1:0:0:60:0@:ferredoxin:Azotobacter vinelandii: 1.90:0.192
*

>P1;1fxd

structureX:1fxd:@:0:58:Q:ferredoxin:Desolfovibrio gigas: 1.70:-1.0

L3

>P1;2fxb

structureX:2fxb:0:0:60:Q@:ferredoxin:Bacillus thermoproteolyticus: 2.30:-1.0
%

1.8.4 Improved modeling of loops in MODELLER-6

See Section 3.3 for more information.

17

18 CHAPTER 1. INTRODUCTION

1.9 Frequently asked questions (FAQ) and examples
Please also check the archive of the Users Mail List at http://guitar.rockefeller.edu/modeller/modeller.html.

1. T do not care about the details of a model, I only want to calculate it very fast to get a quick idea
about how it looks or to confirm that my alignment is clearly unreasonable in the structural
sense.

Only one model can be calculated by this routine because the starting structure is not randomized before op-
timization. Only a very limited amount of the variable target function optimization with conjugate gradients
is done. This is usually for a factor of 3 faster than the default procedure. For example, it takes about 17
seconds of CPU time to model a 60-residue protein on an SGI workstation with a R10000-195 processor.

Very fast homology modelling by the MODELLER TOP routine ’model’.

INCLUDE # Include the predefined TOP routines

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

SET STARTING_MODEL = 2
SET ENDING_MODEL = 2

SET OUTPUT_CONTROL =1 1111

SET OUTPUT = ’LONG’

SET FINAL_MALIGN3D = 1

CALL ROUTINE = ’very_fast’ # prepare for extremely fast optimization

CALL ROUTINE = ’model’ # do homology modelling

2. How can I refine the model in successive steps?

There is a pre-defined routine ’select_atoms’ which selects the atoms to be moved during optimization.
By default, the routine selects all atoms, but you can redefine it to select any subset of atoms and then
only those atoms will be refined. They will “feel” the presence of other atoms wvia all the static and possibly
dynamic restraints that include both selected and un-selected atoms. For example, the script below would
refine only atoms in residues 1 and 2 (file ’examples/tutorial-model/model-segment.top’). The difference
between this script and the one for loop modeling is that here the selected regions are optimized with the
default optimization protocol and the default restraints, which generally include template-derived restraints.
In contrast, the loop modeling routine does not use template-dependent restraints, but does a much more
thorough optimization.

Homology modelling by the MODELLER TOP routine ’model’.
Demonstrates how to refine only a part of the model.

#

You may want to use the more exhaustive "loop" modeling routines instead.
#

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL = 11110

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files
SET STARTING_MODEL= 3 # index of the first model

SET ENDING_MODEL = 3 # index of the last model

1.9. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 19

(determines how many models to calculate)
SET NONBONDED_SEL_ATOMS = 2 # selected atoms do not feel the neighbourhood

CALL ROUTINE = ’model’ # do homology modelling

SUBROUTINE ROUTINE = ’select_atoms’

PICK_ATOMS SELECTION_SEGMENT=’1:’ ’2:’, SELECTION_SEARCH=’segment’, ;
PICK_ATOMS_SET=1, RES_TYPES=’all’, ATOM_TYPES=’all’, ;
SELECTION_FROM=’all’, SELECTION_STATUS=’initialize’

RETURN

END_SUBROUTINE

3. I want to model one or more loops very thoroughly (meaning spending a lot of CPU time, not
necessarily modeling more accurately).

Note that loops and insertions are already modeled by the default modeling routine, so you do not have to do
anything special to get a model for the insertions. However, if you really want to focus on loops, you can use
the new loop modeling routine ’1loop’ (Section 3.3). The selected regions are optimized independently many
times by a thorough molecular dynamics/simulated annealing procedure, using sequence-dependent restraints
only, no homology-derived restraints.

Homology modelling by the MODELLER TOP routine ’model’.
Demonstrates how to refine only a part of the model.

This can be ran with run_clustor model-loop.top, too.
The difference with model-segment is that the loop is

refined on the basis of sequence alone, in the context
of the rest of the structure.

H o H H H O HH

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL =1 1111

SET SEQUENCE = ’1fdx’ # code of the target
SET LOOP_MODEL = ’1fdx.B99990001° # initial model of the target
SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

index of the first loop model:

SET LOOP_STARTING_MODEL = 20

index of the last loop model:

SET LOOP_ENDING_MODEL = 23

SET LOOP_MD_LEVEL = ’refine_1’ # the loop refinement method (1 fast / 3 slow)

CALL ROUTINE = ’loop’

This routine picks model residues that need to be refined (necessary):

SUBROUTINE ROUTINE = ’select_loop_atoms’
Uncomment if you also want to optimize the loop environment:
SET SELECTION_SEARCH = ’SPHERE_SEGMENT’, SPHERE_RADIUS = 6

4 residue insertion (1st loop):
PICK_ATOMS SELECTION_SEGMENT = ’19:’ ’28:’, SELECTION_STATUS = ’initialize’

20

CHAPTER 1. INTRODUCTION

2 residue insertion (2nd loop):
PICK_ATOMS SELECTION_SEGMENT = ’46:’ ’55:’, SELECTION_STATUS = ’add’

RETURN
END_SUBROUTINE

This routine adds any special restraints (optional):

SUBROUTINE ROUTINE = ’special_restraints’
MAKE_RESTRAINTS RESTRAINT_TYPE = ’ALPHA’, RESIDUE_IDS = ’46:’ ’55:’
RETURN

END_SUBROUTINE

H B H H H

. I want to build a model of a chimeric protein based on two known structures. Alternatively,

I want to build a multi-domain protein model using templates corresponding only to the indi-
vidual domains.

This can be accomplished using the standard modeling routine. The alignment should be as follows when the
chimera is a combination of proteins A and B:

proteinA aaaaaaaaaaaaaaaaaaaaaaaaaaaa-———--————- - - -——————————————————
proteinB - bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
chimera aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

In the PIR format the alignment file is:

>P1;proteinA

structureX:proteinA

aaaaaaaaaaaaaaaaaaaaaaaaaaaa-——— - - - """ --— - -————————————— *
>P1;proteinB

structureX:proteinB

———————————————————————————— bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbx*
>P1;chimera

sequence:chimera
aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb*

If no additional information is available about the relative orientation of the two domains the resulting model
will probably have an incorrect relative orientation of the two domains when the overlap between A and B
is non-existing or short. To obtain satisfactory relative orientation of modeled domains in such cases, orient
the two template structures appropriately before the modeling.

. I don’t want to use one region of a template for construction of my model.

The easiest way to achieve this is to not align that region of the template with the target sequence. If region
’bbbbbbbb’ of the template should not be used as a template for region ’eeeee’ of the target sequence the
alignment should be like this:

template aaaaaaaaaaaaaaaaaaaaaaaa-———-— bbbbbbbbcccccececccececcecececccececcececcccec
target ddddddddddddddddddddddddeeeee———----~- B

The effect of this alignment is that no homology-derived restraints will be produced for region ’eeeee’.

. I want to define (additional) disulfide bonds in the target sequence because no equivalent

disulfide bonds exist in any of the templates (in which case PATCH_SS_TEMPLATES cannot
define them automatically).

1.9. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 21

MODELLER can restrain disulfides in two ways: automatically (PATCH_SS_TEMPLATES or
PATCH_SS_MODEL) and manually (PATCH).

If there is an equivalent disulfide bridge in any of the templates aligned with the target, the PATCH_SS_TEMPLATES
command will generate appropriate disulfide bond restraints without any other input from the user. This
command is run automatically by the ’model’ script used for comparative modeling. The restraints include

bond, angle and dihedral angle restraints. The SG — SG atom pair also becomes an excluded atom pair that

is not checked for an atom—atom overlap. The y; dihedral angle restraints will depend on the conformation of

the equivalent disulfides in the template structure, as described in [?]. The command PATCH_SS_MODEL

is similar, except that the current structure of MODEL, not templates, is used to guess the disulfide bonded

CYS — CYS pairs.

Explicit manual restraints can be added by the PATCH command relying on the PRES DISU patching
residue in the CHARMM topology file. This command is used by the ’special_patches’ routine that is
called automatically by the ’model’ script. In comparative modeling by ’model’, the ‘manual’ disulfides
should be defined in the ’special _patches’ routine. The PATCH command will establish the correct
stereochemistry by relying on the CHARMM topology file and parameters to restrain the disulfide bond.

It is better to use PATCH_SS_TEMPLATES than PATCH where possible because the dihedral angles
are restrained more precisely by using the templates than the general rules of stereochemistry.

Some CHARMM parameter files have a multiple dihedral entry for the disulfide dihedral angle x3 that consists
of three individual entries with periodicities of 1, 2 and 3. This is why you see three feature restraints for a
single disulfide in the output of the ENERGY command.

This is as usual:
INCLUDE
SET ALIGNMENT_FILE = ’alignil.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
CALL ROUTINE = ’model’
STOP
Redefine the special_patches routine to include the additional disulfides
(this routine is empty by default):
SUBROUTINE ROUTINE = ’special_patches’
A disulfide between residues 1 and 85 in chain A:
PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’1:A’ ’85:A’
A disulfide between residues 41 and 45 in chain B:
PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’41:B’ ’45:B’
RETURN
END_SUBROUTINE

7. I want to explicitly force certain Pro residues to the cis w conformation.

MODELLER should usually be allowed to handle this automatically via the omega dihedral angle restraints,
which are calculated by default.

This is as usual:
INCLUDE
SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
CALL ROUTINE = ’model’
STOP
Redefine the special_patches routine to force Pro to cis conformation:
(this routine is empty by default):
SUBROUTINE ROUTINE = ’special_restraints’
CALL ROUTINE = ’cispeptide’, ATOM_IDS1 = °’0:4’ ’C:4’ ’N:5’ ’CA:5’, ;
ATOM_IDS2 = ’CA:4’ ’C:4’ ’N:5’ ’CA:5’
RETURN
END_SUBROUTINE

8. How can I select /remove/add a set of restraints?

22

10.

11.

CHAPTER 1. INTRODUCTION

Restraints can be read from a file by READ RESTRAINTS, calculated by MAKE_RESTRAINTS, or
added “manually” by ADD_RESTRAINT. PICK_RESTRAINTS picks those restraints for objective
function calculation that restrain the selected atoms only, as specified in the selected atoms set 1. Initially,
all atoms are selected; this can be changed by the PICK_ATOMS command. MAKE RESTRAINTS
command for some restraint types (e.g., distance) constructs restraints of the selected type between the atoms
in the selected atoms sets 2 and 3. Script >scripts/_homcsr.top’ contains examples of the PICK_ATOMS
command when generating restraints by MAKE_RESTRAINTS. There are also commands for adding and
deleting single restraints, ADD_RESTRAINT and DELETE RESTRAINT, respectively. If you do
CONDENSE_RESTRAINTS, the unselected restraints will be deleted. This is useful for getting rid of
the unwanted restraints completely.

I want to add my own restraints for optimization of the model.

You can read your restraints whenever the default restraints are read.

INCLUDE

SET ALIGNMENT_FILE = ’alignil.ali’, KNOWNS=’templl’, SEQUENCE=’targl’

CALL ROUTINE = ’model’

STOP

Redefine the rd_restraints routine:

SUBROUTINE ROUTINE = ’rd_restraints’
This is the default homology-derived restraints:
READ_RESTRAINTS FILE = CSRFILE, ADD_RESTRAINTS = off
This is two additional user provided files:
READ_RESTRAINTS FILE = ’my_rsrsl.rsr’, ADD_RESTRAINTS
READ_RESTRAINTS FILE = ’my_rsrs2.rsr’, ADD_RESTRAINTS
SET ADD_RESTRAINTS = off
RETURN

END_SUBROUTINE

on

on

I want to add my own restraints to the file with the automatically derived homology restraints,
immediately after the default calculation of the homology-derived restraints.

This is achieved by redefining the ’special_restraints’ routine, which is empty by default.

INCLUDE
SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
CALL ROUTINE = ’model’
Redefine the special_restraints routine:
SUBROUTINE ROUTINE = ’special_restraints’
Add some restraints from a file to existing homology-derived restraints:
READ_RESTRAINTS FILE = ’my_rsrsl.rsr’, ADD_RESTRAINTS = on
Restrain the specified CA-CA distance to 10 angstroms (st.dev.=0.1).
Use a harmonic potential and X-Y distance group.
SET ATOM_IDS ’CA:35:A° ’CA:40:A’
ADD_RESTRAINT RESTRAINT_PARAMETERS = 3 1 1 27 2 2 0 10.0 0.1
SET ADD_RESTRAINTS = off
RETURN
END_SUBROUTINE

I have my own restraints file to be used exclusively for optimization by the default comparative
modeling routine.

INCLUDE

SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
SET CSRFILE = ’targl.rsr’, CREATE_RESTRAINTS = 0

CALL ROUTINE = ’model’

1.9. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 23

12.

13.

14.

15.

16.

I have my own initial structure to be used for optimization by the default comparative modeling
routine.

INCLUDE

SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
Specify the initial structure filename, and tell the program to
read the initial file, not comnstruct it from the templates:

SET MODEL = ’targl.ini’, GENERATE_METHOD = ’read_xyz’

CALL ROUTINE = ’model’

What are the different refinement levels really doing?

There are two different optimization approaches available within MODELLER: variable target function method
(VITFM) with conjugate gradients (CG) [?] and molecular dynamics (MD) with simulated annealing (SA) [?].
They can both be done to a different degree (with more or less cycles of CG and MD, faster or slower sched-
ule for VITFM and SA). The exact details are best obtained from the scripts themselves because a detailed
description would probably be longer than the scripts. For example, the QUANTA and INSIGHTII implemen-
tations of MODELLER have these three levels of optimization: no optimization (only copying coordinates from
templates and building the undefined atoms using internal geometry information from the RTF entries); only
VTFM with CG; also MD with SA. Most of the time (70%) is spent on the MD&SA part. Our experience is
that when MD&SA are used, if there are violations in the best of the 10 models, they probably come from an
alignment error, not an optimizer failure (if there are no insertions longer than approximately 15 residues).

I want to change the default optimization schedule.

See file ’scripts/_defs.top’ for the variables that could be changed and for their possible values.

INCLUDE

SET ALIGNMENT_FILE = ’alignil.ali’, KNOWNS=’templl’, SEQUENCE=’targl’

Very thorough VTFM optimization:

SET LIBRARY_SCHEDULE = 1, MAX_VAR_ITERATIONS = 300

Very thorough MD optimization:

SET MD_LEVEL = ’refinel’

Repeat the whole cycle 3-times and do not stop unless obj.func. > 1E6
SET REPEAT_OPTIMIZATION = 3, MAX_MOLPDF = 1E6

CALL ROUTINE = ’model’

I want to build an all hydrogen atom model with water molecules and other non-protein atoms
(atoms in the HETATM records in the PDB file).

INCLUDE

SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
SET MODEL_TOPOLOGY = 1, HYDROGEN_IO = on, HETATM_IO = on, WATER_IO = on
SET TOPOLOGY_LIBRARY = $(LIB)/top.lib

SET PARAMETERS_LIBRARY = $(LIB)/par.lib

CALL ROUTINE = ’model’

How do I build a model with water molecules or residues that do not have an entry in the
topology and/or parameter files?

Water molecules are indicated by ’w’ in the alignment file and the special block residue (’BLK’) that does
not have entries in the residue topology and parameter libraries is indicated by .~

See Section 2.2.1 for information about block residues.

INCLUDE

SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’
SET HETATM_IO = on, WATER_IO = on

CALL ROUTINE = ’model’

24 CHAPTER 1. INTRODUCTION

The alignment file:

>P1;templl
structureX:templl:1::10::
FAYVI/.wuww*

>P1;targl
sequence:targl:1::8::
-GWIV/.ww-w*

17. How do I define my own residue types, such as D-amino acids, special ligands, and unnatural
amino-acids?

This is a painful area in all molecular modeling programs. However, CHARMM and X-PLOR provide a rea-
sonably straightforward solution via the residue topology and parameter libraries. MODELLER uses CHARMM
topology and parameter library format and also extends the options by allowing for a generic “BLK” residue
type (Section 2.2.1). This BLK residue type circumvents the need for editing any library files, but it is not
always possible to use it. Due to its conformational rigidity, it is also not as accurate as a normal residue
type. In order to define a new residue type in the MODELLER libraries, you have to follow the series of steps
described below. As an example, we will define the ALA residue without any hydrogen atoms. You can add
an entry to the MODELLER topology or parameter file; you can also use your own topology or parameter files.
For more information, please see the CHARMM manual.

(a) Define the new residue entry in the residue topology file (RTF), say ’top_heav.lib’.

RESTI ALA 0.00000

ATOM N NH1 -0.29792

ATOM CA CT1 0.09563

ATOM CB CT3 -0.17115

ATOM C C 0.69672

ATOM O 0 -0.32328

BOND CB CA N CA 0cC C CA C +N

IMPR C CA +N O CANC CB

IC -C N CA C 1.3551 126.4900 180.0000 114.4400 1.5390
ICN CA C +N 1.4592 114.4400 180.0000 116.8400 1.3558
IC +N CA *C 0 1.35568 116.8400 180.0000 122.5200 1.2297
IC CA C +N +CA 1.5390 116.8400 180.0000 126.7700 1.4613
IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461
ICN CA C 0 1.4300 107.0000 0.0000 122.5200 1.2297

PATC FIRS NTER LAST CTER

You can obtain an initial approximation to this entry by defining the new residue type using the residue
type editor in QUANTA and then writing it to a file.

The RESI record specifies the CHARMM residue name, which can be up to four characters long and
is usually the same as the PDB residue name (exceptions are the potentially charged residues where
the different charge states correspond to different CHARMM residue types). The number gives the total
residue charge.

The ATOM records specify the IUPAC (i.e., PDB) atom names and the CHARMM atom types for all the
atoms in the residue.! The number at the end of each ATOM record gives the partial atomic charge.

The BOND records specify all the covalent bonds between the atoms in the residue (e.g., there are bonds
CB-CA, N-CA, O-C, etc.). In addition, symbol ’+’ is used to indicate the bonds to the subsequent
residue in the chain (e.g., C — +N). The covalent angles and dihedral angles are calculated automatically
from the list of chemical bonds.

I There are several small differences between the “CHARMM” TUPAC definitions here and those actually used by PDB (e.g., Ile CD1
in PDB is CD in CHARMM, Leu CD1 and CD2 atoms are swapped, and the PDB carboxy terminal atoms O and OXT are OT1 and
OT?2 in CHARMM, respectively). These differences are handled internally by MODELLER.

1.9. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 25

The IMPR records specify the improper dihedral angles, generally used to restrain the planarity of
various groups (e.g., peptide bonds and sidechain rings). See also below.

The IC (internal coordinate) records are used for constructing the initial Cartesian coordinates of a
residue. An entry

IC a b ¢ d dab Qgpe Gabcd Oped dcd

specifies distances d, angles a, and either dihedral angles or improper dihedral angles © between atoms
a, b, ¢ and d, given by their [IUPAC names. The improper dihedral angle is specified when the third
atom, ¢, is preceded by a star, >*’. As before, the -’ and ’+’ pre-fixes for the atom names select
the corresponding atom from the preceding and subsequent residues, respectively. The distances are
in angstroms, angles in degrees. The distinction between the dihedral angles and improper dihedral
angles is unfortunate since they are the same mathematically, except that by convention when using the
equations, the order of the atoms for a dihedral angle is abcd and for an improper dihedral angle it is
achbd.

The PATC record specifies the default patching residue type when the current residue type is the first
or the last residue in a chain.

(b) You have to make sure that all the CHARMM atom types of the new residue type occur in the MASS
records at the beginning of the topology library: Add your entry at the end of the MASS list if nec-
essary. If you added any new CHARMM atom types, you also have to add them to the radii libraries,
’modlib/radii.lib’ and modlib/radiil4.lib’. These libraries list the atomic radii for the different
topology models, for the long range and 1-4 non-bonded soft-sphere terms, respectively. The full names
of the files that are used during calculation are given by the environment variables $RADIT _LIB and
$RADII14 LIB.

(¢) Optionally, you can add the residue entry to the library of MODELLER topology models, ’mod1lib/models.1lib’.
The runtime version of this library is specified by the environment variable $MODELS LIB. This library
specifies which subsets of atoms in the residue are used for each of the possible topologies. Currently,
there are 9 topologies selected by MODEL_TOPOLOGY (3 is default):

1 ALLH all atoms

POL polar hydrogens only

HEAV non-hydrogen atoms only

MCCB non-hydrogen mainchain (N, C, CA, O) and CB atoms

MNCH non-hydrogen mainchain atoms only

MCWO non-hydrogen mainchain atoms without carbonyl O

CA CA atoms only

MNSS non-hydrogen mainchain atoms and disulfide bonds

9 CA3H reduced model with a small number of sidechain interaction centers

The Ala entry is:

00 g O Ut i W N

#

ALLH POLH HEAV MCCB MNCH MCWO CA MNSS CA3H
*
RESI ALA
ATOM NH1 NH1 NH1 NH1 NH1 NH1 #### NH1 ####
ATOM H HN #Hb ##484 #3 $#a4 #4388 e #4444
ATOM CT1 CT1 CT1 CTi1 CT1 CT1 CT1 CT1 CAH
ATOM HB #3## ##44 #3344 #3444 #4844 ##4 ##44 CH3E
ATOM CT3 CT3 CT3 CT3 #### #### ### ###4 #3444
ATOM HA #3HHE #3484 #3434 #3488 #8444 B #add $s
ATOM HA #3HHE #3484 #3434 #3488 #8444 B #add $s
ATOM HA #3HHE #3484 #3434 #3488 #8444 B #add $s
ATOM C C C C C C #i### C HH###
ATOM 0 0 0 0 0 #### #### O HH###

The residue entries in this library are separated by stars. The ’####°’ string indicates a missing atom.
The atom names for the present atoms are arbitrary. The order of the atoms must be the same as in

26

CHAPTER 1. INTRODUCTION

the CHARMM residue topology library. If a residue type does not have an entry in this library, all atoms
are used for all topologies.

You have to add the new residue type to the residue type library, modlib/restyp.1ib’. The execution
version of this file is specified by the environment variable $RESTYP_LIB. For the ALA residue,

1 | ALA | A | ALA | alanine

You would generally add the new residue type at the end of the file. There are 5 fields in each line,
separated by the ’ |’ characters. The first field is an integer index corresponding to the integer residue
type. The standard residue types have their indices smaller than 24. These are also the indices corre-
sponding to the residue—residue substitution matrices. The second field contains the list of equivalent
PDB or IUPAC 3-character residue names, used in the PDB files. A list rather than a single name is
allowed because PDB can unfortunately use different names for the same residue type (e.g., water can be
HOH, WAT, etc.). The third field gives a single character code for the residue type, which is used in the
alignment file. This does not have to be unique, but if it is not unique you cannot use it in the alignment
file. Any ASCII character is fine, it does not have to be a letter. If you run out of characters you can
re-define the existing ones that you do not need. The fourth field gives the four-character CHARMM
residue name, as specified in the RESI record of the topology library. The last field contains an optional
comment.

Every residue in the CHARMM topology file has to have an entry in the $RESTYP_LIB library, but not
every residue entry in the $RESTYP_LIB library needs an entry in the residue topology file.

When you are adding a new residue type, you have to hope that the maximal number of residue types
is not over-reached. If it is, a fatal error is reported at the beginning of the execution. To solve this
problem, you could delete some of the un-needed existing residue types in the $RESTYP_LIB file, rather
than re-compile the program with larger array sizes. You can also read your own residue type library
by the READ_RESTYP_LIB command.

In general, when you add a new residue type, you also add new chemical bonds, angles, dihedral angles,
improper dihedral angles, and non-bonded interactions, new in the sense that a unique combination of
CHARMM atoms types is involved whose interaction parameters are not yet specified in the parameter
library (see also Section 2.2.1). In such a case, you will get a number of warning and/or error messages
when you generate the stereochemical restraints by the MAKE RESTRAINTS command. These
messages can sometimes be ignored because MODELLER will guess the values for the missing parameters
from the current Cartesian coordinates of the model. When this is not accurate enough or if the necessary
coordinates are undefined you have to specify the parameters explicitly in the parameter library. Search
for BOND, ANGL, DIHE, and IMPR sections in the parameters library file and use the existing entries to
guess your new entries. Note that you can use dummy atom types *X’ to create general dihedral (i.e., X
A A X) and improper dihedral angle (i.e., A X X A) entries, where A stands for any of the real CHARMM
atom types. For the dihedral angle cosine terms, the CHARMM convention for the phase is different for
180° from MODELLER’s (Eq. 5.56). If you use non-bonded Lennard-Jones terms, you also have to add a
NONB entry for each new atom type. If you use the default soft-sphere non-bonded restraints, you have
already taken care of it by adding the new atom types to the $RADIT _LIB and $RADII_LIB libraries.

18. How do I define my own patching residue types?

This is even messier than defining a new residue type. As an example, we will define the patching residue for
establishing a disulfide bond between two CYS residues.

PRES DISU -0.36 ! Patch for disulfides. Patch must be 1-CYS and 2-CYS.
ATOM 1CB CT2 -0.10 !

ATOM 1SG SM -0.08 ! 25G--2CB--

ATOM 2SG SM -0.08 ! /

ATOM 2CB CT2 -0.10 ! -1CB--1SG

DELETE ATOM 1HG1

DELETE ATOM 2HG1

BOND 1SG 2SG

IC 1CA 1CB 1SG 2SG 0.0000 0.0000 180.0000 0.0000 0.0000

1.9. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 27

19.

20.

21.

22.

IC 1CB 1SG 2S8G 2CB 0.0000 0.0000 90.0000 0.0000 0.0000
IC 1SG 2SG 2CB 2CA 0.0000 0.0000 180.0000 0.0000 0.0000

The PRES record specifies the CHARMM patching residue type (up to four characters). As for the normal RESI
residue types, patching residue types also have to be defined in the residue type library, ’mod1lib/restyp.lib’.

The ATOM records have the same meaning as for the RESI residue types described above. The extension
is that the IUPAC atom names (listed first) must be pre-fixed by the index of the residue that is patched.
In this example, there are two CYS residues that are patched, thus the prefixes 1 and 2. When using the
PATCH command, the order of the patched residues specified by RESIDUE_IDS must correspond to these
indices (this is only important when the patch is not symmetric, unlike the DISU’ patch in this example).

DELETE records specify the atoms to be deleted, the two hydrogens bonded to the two sulphurs in this case.

The BOND and IC (internal coordinate) records are the same as those for the REST residues, except that the
atom names are prefixed with the patched residue indices.

Is it possible to restrain secondary structure in the target sequence?

Yes. There are >ALPHA’, >STRAND’ and ’SHEET’ restraint types that the MAKE RESTRAINTS com-
mand can generate. One specifies the segment which is then restrained to the specified secondary structure
conformation. For example,

This is as usual:

INCLUDE

SET ALIGNMENT_FILE = ’alignl.ali’, KNOWNS=’templl’, SEQUENCE=’targl’

CALL ROUTINE = ’model’

STOP

Redefine the special_restraints routine to include the secondary

structure restraints (this routine is empty by default):

SUBROUTINE ROUTINE = ’special_restraints’
SET ADD_RESTRAINTS = on
An alpha-helix:
MAKE_RESTRAINTS RESTRAINT_TYPE
SET KEEP_DUPL_RESTR = ’new’
Two strands:
MAKE_RESTRAINTS RESTRAINT_TYPE
MAKE_RESTRAINTS RESTRAINT_TYPE
An anti-parallel sheet:
MAKE_RESTRAINTS RESTRAINT_TYPE
RETURN

END_SUBROUTINE

’alpha’, RESIDUE_IDS = ’20’ ’30’

’STRAND’ , RESIDUE_IDS ’1’ 1’6
’STRAND’, RESIDUE_IDS = ’9’ ’14’

’SHEET’, ATOM_IDS = °’N:1’ ’0:14’, SHEET_H-BONDS = -5

I want to patch the N-terminal or (C-terminal) residue (e.g., to model acetylation properly),
but the PATCH command does not work.

This is probably because the N-terminus is patched by default with the NTER patching residue (corresponding
to -NH3™) and a patched residue must not be patched again. The solution is to turn the default patching
off by SET PATCH DEFAULT = off before the GENERATE TOPOLOGY command is called.

Is it possible to use templates with the coordinates for C, atoms only?

Yes. You do not have to do anything special.

How do I analyze the output log file?

First, check for the error messages by searching for string > _E>’’. These messages can only rarely be ignored.
Next, check for the warning messages by searching for string ’>_W>’’. These messages can almost always be
ignored. If everything is OK so far, the most important part of the log file is the output of the ENERGY
command for each model. This is where the violations of restraints are listed. When there are too many too
violated restraints, more optimization or a different alignment is needed. What is too many and too much?

28

23.

24.

25.

CHAPTER 1. INTRODUCTION

It depends on the restraint type and is best learned by doing ENERGY on an X-ray structure or a good
model to get a feel for it. You may also want to look at the output of command CHECK_ALIGNMENT,
which should be self-explanatory. I usually ignore the other parts of the log file.

How do I prevent “knots” in the final models?

The best way to prevent knots is to start with a starting structure that is as close to the desired final model
as possible. Other than that, the only solution at this point is to calculate independently many models
and hope that in some runs there won’t be knots. Knots usually occur when one or more neighboring long
insertions (i.e., longer than 15 residues) are modeled from scratch. The reason is that an insertion is build
from a randomized distorted structure that is located approximately between the two anchoring regions.
Under such conditions, it is easy for the optimizer to “fall” into a knot and then not be able to recover from
it. Sometimes knots result from an incorrect alignment, especially when more than one template is used.
When the alignment is correct, knots are a result of optimization not being good enough. However, making
optimization more thorough by increasing the CPU time would not be worth it on the average as knots occur
relatively infrequently. The excluded volume restraints are already included in the standard comparative
modeling routine.

What do I do when I get Syntax error at line 1: ‘(’ unexpected message?

The executable is not recognized as such on your system. Make sure you FTP the file in the binary format.
Make sure the system version matches the self-descriptive name of the binary file. Also it could be related to
automatic processing of files by some Web browsers. Make sure you got a binary, not the file compressed by
”compress” or "gzip” command. If you are not sure about the version of your system use the most generic
executable which has been compiled for lower version of operating system.

What is considered to be the minimum length of a sequence motif necessary to derive mean-
ingful constraints from the alignment to use in modeling.. one, two, three, or more?

Usually more than that (dozens if you want just to detect reliable similarity, and even more if you want a
real model). It is good to have at least 35-40Sometimes even 30

1.10. MODELLER UPDATES 29
1.10 MODELLER updates

1.10.1 Major changes in Releases 5 and 6

The last generally released academic version of MODELLER was version 4. MODELLER 5 has not been generally
released. The current version is MODELLER 6.

The major changes relative to version 4 include (this is a very incomplete list):

e New TOP loop modeling routine ’loop’ significantly improves the accuracy of loop modeling (Section 3.3).
It can also be used in modeling of sidechains or other parts of the structure.

e Several new statistical atomic distance-dependent potentials can typically be used for loop modeling and
model evaluation.

e The ENERGY OUTPUT = ’ENERGY_PROFILE’ allows construction of energy profiles for model evaluation,
based on any combination of MODELLER energy terms. It replaces the ENERGY_PROFILE command.

e New functional form and parameters for the binormal ®, ¥ restraints improve their numerical stability and
accuragcy.

e New TOP command SEGMENT_MATCHING facilitates exploring many different alignments in the
difficult comparative modeling cases.

e New dynamic memory allocation makes MODELLER, more memory efficient.
e Many bug fixes.
e Many new arguments, changed naming/meaning of arguments, and several new commands.

e Conversion from Fortran 77 to Fortran 90 was the main culprit for a very long delay before the latest release.

1.10.2 Detailed chronological listing of some changes since MODELLER-4 release on
17 June, 1997

For an incomplete list of the changes from 17 March 1994 to the release of MODELLER-4, see file >’doc/modeller4-changes’.

e 6/23/97, AS: Added ALIGNMENT_FORMAT = *FASTA’ format to the WRITE_ALIGNMENT command
(routines rdaln and rdpir).

e 6/24/97, AS: Corrected the bug in OPERATE which sometimes caused errors in using the result variable
(e.g., with WRITE OBJECTS = RESULT) that has been defined by the user and not assigned a scalar value
before the call to OPERATE (routine act13).

e 6/25/97, AS: Incorporated several minor code changes suggested by Andrzej Sawaryn to allow compilation
with 90 on Ultra 2 running Solaris 2.5.1 (routine ran6, file *Makefile’).

e 6/27/97, AS: Changed BUILD BUILD_METHOD = ’3D_INTERPOLATION’ so that the new “line” of atoms
is a little randomized to prevent numerical problems with energy calculations (linear impropers, angles, etc.)
(routine insxyz).

e 6/27/97, AS: Upgraded TRANSFER_XYZ by adding CLUSTER.METHOD, which selects how are the
template—template comparisons done at each residue position (’RMSD’ or ’MAXIMAL DISTANCE’) (routine
trfxyz).

e 7/11/97, AS: Changed the format of the representation of spline restraints in the .rsr files (MODELLER12
format changes to MODELLERS format). The specs now contain only the y values, the derivatives are
calculated on the fly. The same for the non-bonded MODELLER restraints in the parameter file.

30

CHAPTER 1. INTRODUCTION

7/13/97, AS: Added arguments SIGNIF_CUTOFF and SEARCH_GROUP_LIST to the SEQUENCE_SEARCH
command. All members of the groups that have SIGNIF larger than SIGNIF_.CUTOFF[1] and are not more
than SIGNIF_CUTOFF[2] units worse than the best hit are put into the alignment arrays.

7/13/97, AS: Added structure resolution to the code in the output pairwise distance matrix produced by the
ID_TABLE and SEQUENCE_COMPARISON commands.

7/19/97, AS: Added a check for sufficient overlap in MALIGNS3D; not a stop, but a return in that case now.

7/22/97, AS: Added the READ_RESTYP _LIB command for reading new residue type definitions, and the
corresponding RESTYP_LIB_FILE variable for specifying the library name.

7/22/97, AS: Simplification of the *mod5” script.

7/22/97, AS: Added automatic recognition of the R, E, and P entries to the ADD_RESTRAINT command
(it was impossible to add the excluded pairs and pseudo atom definitions before this modification).

7/30/97, AS: Added keyword SWAP_ATOMS_IN_RES to SUPERPOSE. This allows swapping atoms in
residues ‘DEFHLNQRVY’ (as selected) to minimize sidechain RMs deviation between MODEL and MODEL2
that have exactly the same atoms in the same order (match.F).

8/8/97, AS: Changed the _model . top script so that the FINAL_MALIGN3D option works for alignments that
use the . option for segment specification.

8/9/97, AS: Renamed the KEEP_RESTRAINTS string variable to the RESTRAINT_SEL_ATOMS integer vari-
able and generalized its meaning (see below). Old KEEP_RESTRAINTS of ONE_ATOM (default) is equal to
the new RESTRAINT_SEL_ATOMS of 1; and the old KEEP_RESTRAINTS of ALL_ATOMS is equal to the new
RESTRAINT_SEL_ATOMS of 9999. Impacts MAKE_RESTRAINTS and PICK_RESTRAINTS.

8/9/97, AS: Renamed the DYNAMIC_FLAG variable to NONBONDED_SEL_ATOMS and modified its meaning
in order to make it consistent with the new variable RESTRAINT_SEL_.ATOMS. Old DYNAMIC_FLAG of 0
(default) is equal to the new NONBONDED_SEL_ATOMS of 2; and the old DYNAMIC_FLAG of 1 is equal to
the new NONBONDED _SEL_ATOMS of 1. Impacts MAKE_RESTRAINTS and OPTIMIZE.

8/9/97, AS: Added RESTRAINT_SEL_ATOMS and modified the MAKE_RESTRAINTS command so that
the stereochemical, MRFP stereochemical, dihedral angle, and bi-dihedral angle restraints are calculated only
when a sufficiently large number of atoms in a possible restraint are selected (set 1): For a given possible re-
straint, only when all restraint atoms or at least RESTRAINT_SEL_ATOMS are selected (set 1), is the restraint
calculated. An exactly equivalent role for the ‘static’ non-bonded restraints (and also for the ‘dynamic’ non-
bonded restraints calculated during OPTIMIZE) is played by NONBONDED_SEL_ATOMS (the new Top
variable that replaces and modifies the meaning of the old, deleted ToP variable DYNAMIC_FLAG). This now
makes it possible to restrict the calculation of all new restraints to the selected atoms only (atom—atom dis-
tance restraints already depended on selected atom sets 2 and 3; secondary structure restraints are calculated
for explicitly defined chain segments only).

8/9/97, AS: Modified the MAKE_RESTRAINTS command so that the calculation of the ‘static’ non-
bonded restraints now takes into account RESIDUE_SPAN_RANGE and RESIDUE_SPAN_SIGN.

8/9/97, AS: Corrected a bug in MAKE_RESTRAINTS (’mkdyn.F’) that resulted in an incorrect use of
DYNAMIC_FLAG during calculation of the ‘static’ non-bonded restraints.

8/9/97, AS: Optimized speed of MAKE_RESTRAINTS for non-bonded restraints by considering the
selected atoms (set 1) instead of all atoms.

8/9/97, AS: Optimized speed of PICK_RESTRAINTS by using the *picatm’ array instead of the ’cnsin1’
and ’cnsin2’ functions.

8/9/97, AS: Corrected a bug in ’preppdf.F’ that sometimes resulted in a loss of explicitly excluded non-
bonded pairs when these were not defined or read in before each call to ’preppdf .F’.

1.10. MODELLER UPDATES 31

e 9/7/97, AS: Initialized the ’ialn()’ array for the PAP, INSIGHT, and QUANTA formats (’rdaln.F’). This
bug may have caused some problems when a short protein is added to the alignment that contained a longer
protein (framework) in its place (e.g., with READ_ALIGNMENT after MALIGN3D).

e 9/13/97, AS: Renamed ToP variable MODELLER STATUS into ERROR_STATUS and moved it within the
top.ini file.

e 9/16/97, AS: Modified protsize.cst and Makefile to allow more flexibility in defining the sizes of the most
important arrays.

e 9/20/97, AS: Introduced the ALIGN_BLOCK argument for the MALIGN command.

e 9/28/97, AB: New parameters:ASGL_2D_TYPE - controls the way 2D arrays are output by the ENERGY _PROFILE
command. PROFILE_2D_PHYS — selects physical type to be presented as a 2D energy profile. NOR-
MALIZE - selects normalization for ENERGY _PROFILE. ASGL_2D_OUTPUT — whether or not to write
2D output for AsgrL. Command names changed: PATCH_DISULFIDES to PATCH_SS MODEL.
INHERIT DISULFIDES - to PATCH_SS_ TEMPLATES. ENERGY PROFILE now outputs 2D
profiles. OUTPUT can contain the type of energy you output by ENERGY _PROFILE: ENERGY or
IDEAL_ENERGY1, and NORMALIZE specifies the type of normalization. Removed the error in calculation of
the spline non-bonded terms.

e 10/28/97, AB: the bug in rsr9 (tmps size) fixed. Restored output of the objective function to the output
PDB file.

e 1/2/98, AB: version 5f-ab: Introduced 32-nd physical restraint type and 7-th feature type (accessible surface

in A2). Libraries ’sched.1ib’, ’feats.lib’, and ’top.ini’ are changed to reflect this. New logical
variable DYNAMIC_ACCESS was introduced. Limitation, each time before you want to use the 32-nd feature
in ENERGY etc., you have to calculate solvent accessibility by WRITE_DATA OUTPUT=PSA.

e 1/5/98, AS: A bug (causing a crash) in seqsearch.F is fixed.

e 1/20/98, AB: version5g = merge (5f-ab, 5f-as). To use solvent accessibility: READ_PARAMETERS FILE
= $LIB/par-32.1lib

e 2/6/98, AB: version5g/doc: Improved the html version of the manual. Changes in Makefile. latex2html was
patched to properly handle the macros containing sectioning commands.

e 1/5/98, AS: Added keyword DIH_LIB_.ONLY to MAKE_RESTRAINTS, to allow forcing the calculation
of the “homology-derived” mainchain and sidechain dihedral angle restraints (single and binormal) from the
residue type dependent libraries only (templates ignored).

e 1/25/98, AS: changed default BUILD_METHOD back to INTERNAL_COORDINATES.

e 2/19/98, AS: corrected a bug in distdp3.inc which sometimes caused incorrect C-terminal overhang treatment,
possibly incorrect alignment as a whole.

e 2/27/98, AS: MNCH2_LIB moved to MNCH_LIB.

e 3/05/98, AS: Changed the algorithm for calculating the mainchain curvature. Now using least-squares lines
instead of simple C,— Cyvectors.

e 3/12/98, AS: added option SIGNIF_CUTOFF to SEQUENCE_SEARCH.

e 3/23/98, AS: changed ALIGN_CODES to ALIGN_CODES?2 for READ_ALIGNMENT2.

e found a workaround for a nasty compiler bug in mod2ali (for SGI, make opts) that caused naln=1.
e 4/28/98, AS: added MNCH?_LIB libraries to allow for i-1,i,i4+1 mainchain conformation restraints.

e 4/30/98, AB: in ’model/build.F’: all DISU stuff was deleted. atom classes are assigned based on the iss
array, resnam does not change.

e 4/30/98, AB: In energy calculations, "slow” character parameters were replaced by ”fast” integer ones.

32

CHAPTER 1. INTRODUCTION

6/6/98, AS: Created new command SEGMENT_MATCHING for enumerating the alignments.
6/6/98, AS: Removed SELECTION_STEP from MODELLER.

6/6/98, AS: Expanded options to PICK_ATOMS by allowing for automated selection of loops; a special
value for SELECTION_SEGMENT of 'LOOPS’ ” and new variable GAP_EXTENSION were introduced.

6/6/98, AS: Modified the loop modeling scripts and other scripts so that robust loop modeling can be done
automatically.

There are at least 43 such arrays with a dozen diffrent character length.
6/6/98, AS: Added the single mutant modeling script.
7/1/98, AS: Added the missing ALIGN_ALIGNMENT top ’top.ini’.

7/1/98, AS: Removed undefined entries from top.ini. Changed the meaning of RENUMBER_RESIDUES so
that it corresponds to the first residue index in renumbering.

7/1/98, AS: removed sdch.1ib for sidechain classes 1-2 from all parts, including COMPARE.

7/1/98, AS: changed format of mnch.1lib, removed class weights from this library because they occur in
mnch?.1ib.

7/7/98, AB: the multimple binormal restraints were debugged: 1) detection of most relevant phase of phi/psi
angles 2) removal of the bug in calculation of the derivatives

7/8/98, AS: increased flexibility of ALIGN2D so that it needs only at least one structure for the first block
of sequences.

7/9/98, AB: CA-only warning in READ_MODEL and other routines using rdpdb

7/11/98, AB: New kind of error message is introduced: _B - to inform about bugs. Now used for former
”Increase MAX...” and similar messages only. Scan_errors modified respectively.

7/18/98, AS and AB: BUILD_METHOD for BUILD_MODEL can continue to be 3D_INTERPOLATION, INTERNAL COORDINAT

but can now also assume ONE_STICK and TWO_STICKS values to generate different initial structures for inserted
atoms.

7/20/98, AS: biperiodic is now used
7/24/98, AS: not using schedule in PICK_RESTRAINTS at all.

8/24/98, AS: introduced EXPAND_CONTROL to allow more control for the EXPAND_ALIGNMENT
command.

8/24/98, AS: made a vector out of RENUMBER_SEGMENTS.
8/24/98, AS: introduced NO_TER.

9/10/98, AS: updated COMPARE_SEQUENCES so that variability of the first sequence in the alignment
is written to the Biso column of MODEL.

9/15/98, AS: changed default NONBONDED_SEL_ATOMS from 2 to 1, in top.ini.

98-00, AS: too numerous changes to list here, conversion from f77 to f90.

Chapter 2

MODELLER commands

Sections in this Chapter describe technical aspects of MODELLER. They include:

e miscellaneous rules and features of MODELLER (Section 2.1);

e dealing with stereochemical parameters and molecular topology (Section 2.2);

handling of atomic coordinates (Section 2.3);

e comparing and searching of sequences and structures (Section 2.4);

calculating spatial restraints (Section 2.5),

deriving the model by minimizing the restraints (Section 2.6).

2.1 Miscellaneous rules and features of MODELLER

This Section describes several features of the program, including file naming conventions, various file types, and
the control of the amount of output.

2.1.1 MODELLER system

One of the main aims of MODELLER is to allow for flexible exploration of various modeling protocols to facilitate
the development of better modeling methods. MODELLER can be seen as an interpreted language that is specialized
for modeling of protein 3D structure. MODELLER’s organization is hierarchical and modular:

User script files.
MODELLER tasks (e.g., ’model?’).
Library of MODELLER’s routines.
ToP interpretor commands.
ToP intepretor.
MODELLER source code.

2.1.2 Running MODELLER scripts
MODELLER is run by

mod script_file_name

33

34 CHAPTER 2. MODELLER COMMANDS

where script_file name is the name of the script file with instructions for MODELLER. This file contains commands
in the ToP language. Each command line consist of the name of the command and optional variable assignments
that control the action of the command. The scope of the variables is global; that is, once a variable is assigned on
any command line, the assigned value remains in effect, in the main program and all subroutines, until explicitly
changed by another assignment or, in a few cases, by MODELLER. All the commands and the default values
of the variables are listed in Section 5.4. This Chapter describes the TOP commands that are used for dealing
with proteins; the general TOP commands (e.g., assignment, flow control, arithmetic operations) are described in
Chapter 4.

See directory examples for examples of the ToOP scripts that use commands described in this Chapter. In
particular, sub-directory examples/commands contains the examples used in this Chapter. Another set of ToP
scripts that you could use as templates can be found in the scripts directory.

2.1.3 Controlling breakpoints and the amount of output

Some errors are recoverable. For those errors, TOP variable MODELLER_STATUS becomes 1. A test is then
performed: If MODELLER STATUS is equal or greater then STOP_ON_ERROR, execution stops; otherwise, the
control is passed back to the calling TOP routine where execution continues with the next ToP command. It is
then up to your TOP script to deal sensibly with the failure of the preceding command. For example, this flexibility
allows derivation of multiple models and searching for many sequences, even if some cases abort due to convergence
problems.

There are five kinds of messages that MODELLER writes to the log file, indexed 1 to 5: long output from the
MODELLER commands, short notes to do with the execution of the program (files opened, etc.), warnings identified
by ¢_W>’, errors identified by ¢_E>’, and the messages about the status of dynamic memory allocation. The five
elements in the Top variable OUTPUT_CONTROL[1:5] can assume values of 0 or ‘not 0’; 0 indicates that the
corresponding information is not written out, ‘not 0’ indicates that it is.! Thus, different amounts of output can
be selected. If everything is well, OUTPUT_CONTROL =1 0 0 1 0 is convenient because no execution messages,
warnings, and dynamic memory reports are written out; for debugging, use OUTPUT_CONTROL =1111 1. To
increase the detail of the dynamic memory status reports, set the last flag to 2.

2.1.4 File naming

There are several filename generating mechanisms that facilitate file handling. Not all of them apply to all file
types.

Environment variables

There can be UNiX shell environment variables in any input or output filename. The environment variables have
to be in the format ${VARNAME} or $ (VARNAME). Also, four predefined macros are available for string variables:

e ${LIB} is expanded into the $LIB_MODELLER variable defined in mod1ib/1ibs.1ib (equal to $MODINSTALL6E/modlib);
e ${DIR} is expanded into the TOP variable DIRECTORY;
e ${JOB} is expanded into the root of the TOP script filename;

¢ ${DEFAULT} is expanded into (ROOT_NAME) (FILE_ID) (ID1) (ID2) (FILE EXT), where ROOT_NAME, FILE_ID,
ID1, ID2, and FILE_EXT are ToOP variables. FILE_ID is a string that may be set to >default’. In that case,
a hard-wired short string is used instead of FILE_ID. Otherwise, the explicitly specified FILE_ID is applied.
In any case, FILE_ID is not modified by the filename generation routine so that it can be used more than
once without resetting it to the default’ value. Four digits are used for both ID1 and ID2. For example,
?2ptn.B99990001° results from ROOT_NAME = ’2ptn’, FILE.LEXT =’ .B’, ID1 = 9999, and ID2 = 1.

I This has not been implemented for all the output yet.

2.1. MISCELLANEOUS RULES AND FEATURES OF MODELLER 35

Automatic filename generation

For any filename, input or output, if the value of the variable is ’default’ (case insensitive), the actual filename
is constructed within the routine that will use the filename. The name is constructed by the same rule as that
for the ${DEFAULT} environment variable (Section 2.1.4). The only difference between the two cases is that SET
FILE = ’default’ may not work as expected if the TOP variables defining the filename change between the SET
command and the command that will use the filename, whereas SET FILE = ’${DEFAULT}’ will work as expected
because the filename FILE is actually constructed during the SET command.?

Directory prefixes

Input. For many input filenames, the full filename is obtained by looking for the file in the list of directories
specified in the Top variable DIRECTORY. The directories in DIRECTORY are separated by colons (*:’) (e.g.,
‘dir1:dir2:dir3:...”). DIRECTORY can also contain the current directory (‘ ’ or ‘./”).

The directory prefix for the input atom coordinate filenames is obtained in a similar way, except that ATOM -
FILES_DIRECTORY is used instead of DIRECTORY. Moreover, there is an additional mechanism for reading an
atom coordinate file that requires specifying the protein code only (see below in Section on coordinate files and
derivative data).

The list of directories is not scanned for the input filenames that start with /.

In contrast, the INCLUDE_FILE file is looked for in the distribution’s $BIN_MODELLER6 directory (equal to
$MODINSTALL6/bin directory) in addition to the DIRECTORY directories. This allows for an easy inclusion of
the predefined system ’__x.top’ files by the INCLUDE command.

Output. For all output filenames, except for those that start with ’/’, the full output filename is obtained by
pre-fixing the filename with OUTPUT_DIRECTORY.

Coordinate files and derivative data

When accessing an atom file, a specified filename is tried first. If this is unsuccessful, MODELLER automatically
expands the original filename by adding extension > .Z’. This allows it to detect atom files compressed with the UNIX
compress command. If the compressed file exists, MODELLER automatically uncompresses it, reads it, and puts it
back into the original state after the reading is finished. If the specified file is still not found, the extensions ’.atm?,
’.pdb’, ’.ent’, and ’.crd’ are tried in this order, without and with extension ’>.Z’, then also with the ’pdb’
prefix. This search for the atom file is repeated through all the directories in ATOM_FILES_DIRECTORY (directories
are separated by ’:?), unless input atom filename starts with ’/’, in which case ATOM_FILES_DIRECTORY is
neglected. Finally, if still unsuccessful and the file specified by the environment variable $PDBENT exists, the
coordinate filename (e.g., the 4 character PDB code) is matched to the list of the full PDB filenames in $PDBENT
(compressed and uncompressed). For example, $PDBENT file may be:

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdblema.ent
/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdblhbp.ent
/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdblgpy.ent
/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb6gpb.ent
/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdbifia.ent
etc.

Any derivative data that MODELLER may need, including residue solvent accessibilities, hydrogen bonding
information, dihedral angles, residue neighbors, etc., are calculated on demand from the atomic coordinates. The
most time consuming operation is calculating solvent accessibility, but even this calculation takes less than 1 sec
for a 200 residue protein on a Pentium IIT workstation.

MODELLER stores the filenames of coordinate sets in the alignment arrays. These arrays are used by COM-
PARE, MAKE _RESTRAINTS, MALIGN3D, ALIGN2D, and several other commands. If these filenames

2The default’ substitution will be phased out because it is a subset of the ${DEFAULT} substitution.

36 CHAPTER 2. MODELLER COMMANDS

do not change when the structures are needed for the second time, the coordinate files are not re-read because they
should already be in memory. This creates a problem only when the contents of a structure file changes since it
was last read during the current job.

2.1.5 File types

MODELLER uses a number of standard filename extensions to indicate the type of data stored in a file (Table 2.1).
The extensions are generally not mandatory, only very helpful.

2.1.6 Format of the command description

For each command, the list of arguments, brief description, and an example are given. Additional background
information may be found in Chapter 5. The variable types are described as follows (see also Table 77?):

(integer : 1) an integer variable or constant

(real: 1) a real variable or constant

(string: 1) a string variable or constant

(logical: 1) a logical variable or constant

(integer : 0) a vector of any length with elements (integer : 1)
(integer : N) a vector of N elements (integer : 1)

ete. the same for real, string, and logical types

2.1. MISCELLANEOUS RULES AND FEATURES OF MODELLER 37

Extension Description

.top TOP script with instructions for a MODELLER job

.log log output produced by a MODELLER run

.ali alignment or sequences in the PIR format

.pap alignment or sequences in the PAP format

.aln alignment or sequences in the QUANTA format

.aln alignment or sequences in the INSIGHTII format

.seq, .chn sequence(s) in the PIR alignment format

.cod list of sequence codes

.grp list of families in PDB

.atm, .pdb, .ent atom coordinates in the PDB or GRASP format

.crd atom coordinates in the CHARMM format

_fit.pdb fitted protein structures in the PDB format

.ini initial MODELLER model

.Bx MODELLER model in the PDB format

.Dx the progress of optimization

.BLx* MODELLER model in the PDB format, in loop modeling
.DL* the progress of optimization, in loop modeling

JILx initial MODELLER model, in loop modeling

LV violations profile

.Ex energy profile

.rsr restraints in MODELLER or USER format

.sch schedule file for the variable target function optimization
.mat matrix of pairwise protein distances from an alignment
.mat matrix of pairwise residue type-residue type distance scores
.sim.mat matrix of pairwise residue type-residue type similarity scores
.1ib various MODELLER libraries

.psa residue solvent accessibilities

.sol atomic solvent accessibilities

.ngh residue neighbors

.dih mainchain and sidechain dihedral angles

.ssm secondary structure assignment

.var sequence variability profile from multiple alignment
.asgl data for plotting by ASGL

Table 2.1: List of file types.

38 CHAPTER 2. MODELLER COMMANDS

2.2 Stereochemical parameters and molecular topology

All molecular modeling programs generally need to know what are the atoms in all residue types, what are the atom
pairs that are covalently bonded to each other (i.e., molecular topology), and what are the ideal bond lengths,
angles, dihedral angles, and improper dihedral angles (i.e., internal coordinates and stereochemical restraints).
For a given MODEL, these data are constructed mostly from information in the residue topology and parameter
libraries. This section describes the commands for reading and writing parameter and residue topology libraries,
and for generating, patching, and mutating molecular topology.

2.2.1 Modeling residues with non-existing or incomplete entries in the topology and
parameter libraries

Defining new residue types is generally one of the more painful areas in developing and using a molecular modeling
program. MODELLER has two quick-and-dirty solutions described in the next two sections that are often sufficient
for comparative modeling involving new residue types. On the other hand, if you are willing to spend some time
and define a new entry or complete an incomplete entry in the residue topology or parameter libraries, see the FAQ
Section 1.9, Question 17.

Residues with defined topology, but with missing parameters

The parameter library is used by the MAKE RESTRAINTS command to construct bond, angle, dihedral
angle, improper dihedral angle, and non-bonded Lennard-Jones restraints. If some parameters for these restraints
are missing, they are guessed on the fly from the current Cartesian coordinates of the MODEL. Thus, when there
are missing parameters, the MODEL coordinates must be defined before calling MAKE RESTRAINTS. The
coordinates can be defined by the BUILD_MODEL command (from the IC entries in the residue topology library),
by the READ_MODEL command (from an existing coordinate file for MODEL), or by the TRANSFER_XYZ
command (from template coordinate files aligned with MODEL). The bonds, angles, and improper dihedral angles
are restrained by a harmonic potential with the mean equal to the value in the current structure and a force
constant typical for chemical bonds, angles, and improper dihedral angles, respectively. The dihedral angles are
restrained by a tri-modal cosine term with the mean equal to the angle in the current structure. A message detailing
MODELLER’s improvization is written to the log file.

Block (BLK) residues with undefined topology and parameters

The second relatively easy way of dealing with missing entries in the residue topology and/or parameters libraries
is to use a “block” residue. These residues are restrained more or less as rigid bodies to the conformation of the
equivalent residue(s) in the template(s). No chemical information is used. The template residues can themselves
be defined as block residues. The symbol for the block residues is ‘BLK’ in the four- and three-letter codes and
¢ in the single-letter code. The atoms in a BLK residue include all uniquely named atoms from the equivalent
residues in all the templates. The atom type of all BLK atoms is the CHARMM type ‘undf’. The TUPAC atom
names (as opposed to the atom types) are the same as in the templates. The ‘undf’ atom type for all BLK atoms
facilitates using the PICK_ATOMS command for generating restraints on the ‘BLK’ residues.

The ‘undf’ atoms are treated differently from the other atoms during preparation of dynamic restraints: No
pairs of intra-BLK atoms are put on the dynamic non-bonded list. Only the “inter-BLK” atom pairs and “BLK—
other” atom pairs are considered for the dynamic non-bonded restraints. The radius of all block atoms is obtained
from the $RADII LIB library using the block atom names (as written out to a PDB file), not the ‘undf’ atom
type. All intra-BLK and inter-residue BLK restraints other than the non-bonded restraints have to be derived
separately and explicitly by MAKE RESTRAINTS command using RESTRAINT_TYPE = ’distance’. See
script scripts/__homcsr.top for the routine that makes block restraints for comparative modeling by the ‘model’
script. Lennard-Jones, electrostatic, and general non-bonded spline terms involving ‘undf’ atoms are ignored by
MODELLER.

For an example of how to use block residues, see the FAQ Section 1.9, Question 16.

2.2. STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 39

2.2.2 READ _RESTYP_LIB — read residue type library

Options:
RESTYP_LIB_FILE = (string: 1) ’$(LIB) /restyp.lib’ residue type library

Description: This command reads residue types from the residue type library specified by variable RESTYP_LIB_FILE.
See the FAQ Section 1.9, Question 17 for the format of this file. MODELLER reads the default residue type
library during startup; this command can be used to read residue type definitions for new residue types
defined by the user without editing the default residue type library.

Example:

Example for: READ_RESTYP_LIB

This will read again a user specified residue type library, perhaps
to read in the new user-defined residue types.

Just read the default file again for this example:
READ_RESTYP_LIB RESTYP_LIB_FILE = ’$(LIB)/restyp.lib’

2.2.3 READ_TOPOLOGY — read residue topology library

Options:
FILE = (string: 1) ’default’ partial or complete filename
DIRECTORY = (string:1) 2 directory list (e.g., *dirl:dir2:dir3:./:/?)
ADD_TOPOLOGY = (logical : 1) off whether to add new residue topologies to existing

ones

Description: This command reads residue topologies from the topology library, such as the CHARMM 22 topol-
ogy file [?] (it also reads which subsets of atoms correspond to each TOPOLOGY_MODEL from library
’MODELS_LIB’). This file must include atomic connectivities of residues and patching residues, and the inter-
nal coordinates for minimum energy residue conformations. Patching residues modify residues; for example,
N-terminus, C-terminus and disulfide bonds are defined by patching the original topology. This information
is used for generating the molecular topology and possibly for calculating an initial conformation. The default
topology for comparative modeling by MODELLER includes only non-hydrogen atoms (TOPOLOGY_MODEL
= 3). To define your entries in the topology library, see the FAQ Section 1.9, Questions 17 and 18.

If ADD_TOPOLOGY is on, the new residue topologies are added to the existing residue topologies, otherwise
the new topology file replaces the old one. If the topology for a residue is duplicated only the last definition
is kept.

Not all the features of the CHARMM 22 topology library are implemented in MODELLER, although a CHARMM
file should be read in successfully. A variety of topology files for different kinds of models can be prepared by
the MAKE_TOPOLOGY _MODEL command.

The filename for the library is DIRECTORY//FILE.

Example: See PATCH command.

2.2.4 READ_PARAMETERS — read parameters library

Options:
FILE = (string: 1) ’default’ partial or complete filename

40 CHAPTER 2. MODELLER COMMANDS

DIRECTORY = (string:1) 7 directory list (e.g., ’dirl:dir2:dir3:./:/?)
ADD_PARAMETERS = (logical : 1) off whether to add new parameters to existing ones

Description: This command reads the parameters from the parameter library, such as the CHARMM 22 parameter
file for proteins with all atoms [?]. This file contains the values for bond lengths, angles, dihedral angles,
improper dihedral angles, and non-bonded interactions. MODELLER relies on slightly modified CHARMM-
22 parameters to reproduce the protein geometry in the MODELLER environment. For example, for the
default non-hydrogen atoms model, the w dihedral angle restraints are stronger than the original CHARMM 22
values which apply to the all-hydrogen model. For a sparse discussion of the parameter library, see the FAQ
Section 1.9, Question 17.

If ADD_PARAMETERS is on, the new parameters are added to the existing parameter list, otherwise the
contents of the new parameter file replaces the old one.

The filename for the library is DIRECTORY /FILE.

Example: See PATCH command.

2.2.5 READ_ATOM_CLASS — read classification of atom types

Options:
ATOM_CLASSES_FILE = (string: 1) ’$(LIB)/atmcls-melo.llibfary with atom class definitions for MOD-
ELLER non-bonded restraints

Description: This command reads a MODELLER classification of atom types from file ATOM_CLASSES FILE. This
particular atom type classification is used for calculation of the special non-bonded terms other than the soft-
sphere, Lennard-Jones or Coulomb terms (for which the CHARMM atom type classification is used). These
terms are usually the statistical potentials of mean force described by non-bonded spline restraints, including
single body and two body terms. The default atom classification is read during MODELLER initialization.

Example:

Example for: READ_ATOM_CLASSES

This will read an atom classification for non-bonded statistical potentials
of mean force.

READ_ATOM_CLASSES ATOM_CLASSES_FILE = ’$(LIB)/atmcls-melo.lib’

2.2.6 GENERATE TOPOLOGY — generate MODEL topology

Options:

ADD_SEGMENT = (logical: 1) off whether to add the new segments to the list of
segments

PATCH_DEFAULT = (logical : 1) on whether to do default NTER and CTER patching

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

SEQUENCE = (string: 1) ’undefined’ protein code in the alignment whose topology is
constructed

ATOM_FILES = (string: 0)) complete or partial atom filenames

ATOM_FILES_DIRECTORY = (string:1) °’./’ input atom files directory list (e.g,

’dirl:dir2:dir3:./:/)
WATER_IO = (logical : 1) off whether to read water coordinates

2.2. STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 41

HETATM_IO = (logical : 1) off whether to read HETATM coordinates
HYDROGEN_IO = (logical : 1) off whether to read hydrogen coordinates
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9

Requirements: topology and parameter libraries

Description: This command calculates MODEL’s covalent topology (i.e., atomic connectivity) and internal coor-
dinates, and assigns CHARMM atom types, MODELLER atom types for non-bonded spline restraints, atomic
charges, and atomic radii.

If a protein with code SEQUENCE is found in the current alignment (codes of proteins in the current alignment
are stored in ALIGN_CODES), this protein’s topology is calculated. If no SEQUENCE entry exists or if the
alignment does not exist, the sequence of the MODEL is used. If the MODEL does not exist, an error is
reported. The MODEL can be read in from an atomic coordinates file with the READ_MODEL command.

The new sequence is added to the list of segments of the MODEL if ADD_SEGMENT is on, otherwise this list
is initiated.

A sequence in the alignment can use any non-patching residue listed in the single-character code column of the
$RESTYP_LIB library (’modlib/restyp.lib’). Examples of non-standard residue types include water (*w?),
zinc (’z?), calcium (’3?), heme (’h’), and many others. Patching residues must not be used here, but with
the subsequent PATCH commands. Unrecognized residues are ignored. A special allowed residue type is
the chain break ¢/’. This can be used to construct a protein that consists of several chains separated by chain
breaks. Chain breaks before a non-standard residue type (there are 23 standard residue types, including ’-?,
’Asx’ and ’Glx’) are inserted automatically and do not have to be specified explicitly in the sequence.

The GENERATE _TOPOLOGY command generates only the topology of the MODEL, not its Cartesian
coordinates; the Cartesian coordinates are assigned by the BUILD MODEL, TRANSFER XYZ, or
READ _MODEL commands.

In general, the GENERATE TOPOLOGY command has to be executed before any energy commands
(ENERGY, OPTIMIZE, PICK_HOT_ATOMS). The reason is that reading the Cartesian coordinates
by the READ_MODEL command does not generate all the data usually needed for energy evaluation.
However, if the order and number of atoms in the input file correspond exactly to the order and number of
atoms implied by the restraint atom indices and if you are not using dynamic restraints that rely on non-
existing data, such as bond, angle, and dihedral angle lists, atomic charges, radii, Lennard-Jones parameters,
MODELLER atom types, or CHARMM atom types (which are used to determine the atomic radii), it is sufficient
to do only READ_MODEL and omit GENERATE_TOPOLOGY before the energy commands. In short,
if you use static restraints alone and if the atom file has the atoms in the correct order, you do not have to
call GENERATE_TOPOLOGY before calculating energy.

The variables ATOM_FILES, ATOM_FILES_DIRECTORY, WATER_IO, HETATM_IO, HYDROGEN_IO, and TOPOL-
OGY_MODEL are necessary only when the ’BLOCK’ residues are present in the sequence whose topology is
generated. In that case, the template PDB files are read in.

Example: See PATCH command.

2.2.7 PATCH — patch MODEL topology

Options:
RESIDUE_IDS = (string : 0) 7 identifiers of the patched residues
RESIDUE_TYPE = (string: 1) ’undefined’ patching residue type
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9

Description: This command uses a CHARMM patching residue to patch the topology of the MODEL. CHARMM
patch rules are observed.

42

CHAPTER 2. MODELLER COMMANDS

RESIDUE_TYPE is the type of the patching residue (PRES entry in the topology library), such as *DISU’,
’NTER’, *CTER’, etc. You do not have to apply explicitly the N- and C-terminal patches to protein chains
because the *NTER’ and ’CTER’ patches are applied automatically to the appropriate residue types at the
termini of each chain at the end of each GENERATE_TOPOLOGY command.

RESIDUE_IDS are residue identifiers of the patched residues (Section 2.4.1). The first residue is the patched
residue 1, the second residue is the patched residue 2, etc; for example, the ’DISU’ patching residue has two
patched Cys residues while the ?ACE’ patching residue has only one patched residue. The order of the residue
identifiers here has to match the definition of the patching residue in the topology library.

It is not allowed to patch an already patched residue. Since the N- and C-terminal residues of each chain
are automatically patched with the NTER’ and ’CTER’ patching residues, respectively, a user who wants to
patch the N- or C-terminal residues with other patches, should turn the default patching off before executing
GENERATE_TOPOLOGY. This is achieved by SET PATCH_DEFAULT = off.

Example:

Example for: PATCH, READ_TOPOLOGY, READ_PARAMETERS

This will define a CYS-CYS disulfide bond between residues 3 and 22.

READ_TOPOLOGY FILE
READ_PARAMETERS FILE

’$(LIB) /top_heav.lib’
’$(LIB) /par.lib’

Read the sequence:

READ_MODEL FILE = ’1fas’

have two copies of the sequence in the alignment, for TRANSFER_XYZ later:

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

Create the disulfide bond:
PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’3’ ’22’

Get MODEL’s coordinates from the template, using the alignment (1:1 here):
TRANSFER_XYZ

Calculate missing coordinates using internal coordinates:

BUILD_MODEL INITIALIZE_XYZ = off

Create the stereochemical restraints
MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

Calculate the energy to test the disulfide:
ENERGY

2.2.8 PATCH_SS_TEMPLATES — guess MODEL disulfides from templates

Options:
ALIGN_CODES = (string : 0) ’all’ codes of proteins in the alignment
ATOM_FILES = (string: 0)) complete or partial atom filenames
ATOM_FILES_DIRECTORY = (string:1) °’./’ input atom files directory list (e.g,

’dirl:dir2:dir3:./:/)
WATER_IO = (logical : 1) off whether to read water coordinates

2.2. STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 43

HETATM_IO = (logical : 1) off whether to read HETATM coordinates
HYDROGEN_IO = (logical : 1) off whether to read hydrogen coordinates
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9

Requirements: alignment

Output: DISTANCE_ATOMS

Description: This command defines and patches disulfide bonds in the MODEL using an alignment of the MODEL
sequence with one or more template structures. The MODEL sequence has to be the last sequence in the
alignment. The template structures are all the other proteins in the alignment. All Cys—Cys pairs in the
target sequence that are aligned with at least one template disulfide are defined as disulfide bonds themselves.
The covalent connectivity is patched accordingly.

If no alignment exists, a default 1:1 alignment is constructed. Variable ATOM_FILES can be used to specify
template structures.

This command should be run after GENERATE_TOPOLOGY and before MAKE_ RESTRAINTS to
ensure that the disulfides are restrained properly by the bond length, angle, and dihedral angle restraints and
that no SG-SG non-bonded interactions are applied.

The disulfide bond, angle and dihedral angle restraints have their own physical restraint type separate from
the other bond, angle and dihedral angle restraints (Table 2.4).

DISTANCE_ATOMS becomes CA SG.

Example:

Example for: PATCH_SS_TEMPLATES and PATCH_SS_MODEL
This will patch CYS-CYS disulfide bonds using disulfides in aligned templates:

SET OUTPUT_CONTROL =1 1111

READ_TOPOLOGY FILE
READ_PARAMETERS FILE

’$(LIB) /top_heav.lib’
’$ (LIB) /par.lib’

Read the sequence, calculate its topology, and coordinates:
READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

Superpose the two template structures without changing the alignment.
This is for TRANSFER_XYZ to work properly. It relies on not reading
the atom files again before TRANSFER_XYZ.

MALIGN3D FIT = off # This is for TRANSFER_XYZ to work properly.
READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ALIGN_CODES ’1fas’
GENERATE_TOPOLOGY SEQUENCE = ’1fas’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = on

WRITE_MODEL FILE = ’1fas.noSS’

Create the disulfide bonds using equivalent disulfide bonds in templates:
PATCH_SS_TEMPLATES

Create the stereochemical restraints
MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):
ENERGY

44 CHAPTER 2. MODELLER COMMANDS

READ_MODEL FILE = ’1fas.noSS’
Create the disulfide bonds guessing by coordinates
PATCH_SS_MODEL

Create the stereochemical restraints
MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):
ENERGY

2.2.9 PATCH_SS_MODEL — guess MODEL disulfides from model structure

Options:
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9

Requirements: model

Description: This command defines and patches disulfide bonds in MODEL using MODEL’s current structure.
A disulfide bridge is declared between all pairs of Cys residues whose SG-SG distances are less than 2.5A.
The covalent connectivity is patched accordingly.

This command should be run after READ_MODEL and before optimization to ensure that the disulfides
are fixed properly and that no SG-SG non-bonded interactions are applied.

TOPOLOGY_MODEL is needed to make sure the correct atomic radii are used in CYS—CYS patching.

Example: See PATCH_SS_TEMPLATES command.

2.2.10 MUTATE_MODEL — mutate selected MODEL residues

Options:
RESIDUE_TYPE = (string: 1) ’undefined’ new residue type

Description: This command mutates the selected residues of the MODEL to the type specified by RESIDUE -
TYPE. CHARMM 4-character residue type names are used (see library file $RESTYP_LIB). To select the residues
for mutation, use PICK_ATOMS command. All the residues with at least one atom in the selected set
1 of atoms are mutated. To produce mutants, employ this command with SEQUENCE_TO_ALI and
WRITE_ALIGNMENT. It is usually necessary to write the mutated sequence out and read it in before
proceeding, because not all sequence related information about MODEL is changed by this command (e.g.,
internal coordinates, charges, and atom types and radii are not updated).

Example:
Example for: MUTATE_MODEL
This will read a PDB file, change its sequence a little, build new

coordinates for any of the additional atoms using only the internal
geometry, and write the mutant PDB file. It can be seen as primitive,

2.2. STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 45

but rapid comparative modeling for substitution mutants. For insertion
and deletion mutants, follow the standard comparative modeling procedure.

Read the topology library with non-hydrogen atoms only:
READ_TOPOLOGY FILE = ’*$(LIB)/top_heav.1lib’, TOPOLOGY_MODEL = 3
To produce a mutant with all hydrogens, uncomment this line:
READ_TOPOLOGY FILE = ’$(LIB)/top.lib’, TOPOLOGY_MODEL = 1

Read the CHARMM parameter library:
READ_PARAMETERS FILE = ’$(LIB)/par.lib’

Read the original PDB file and copy its sequence to the alignment array:
READ_MODEL FILE = ’1fas’
SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

Select the residues to be mutated: in this case all ASP residues:
PICK_ATOMS RES_TYPES = ’ASP’

The second example is commented out; it selects residues ’1’ and ’10°’.

SET SELECTION_SEARCH = ’SEGMENT’, SELECTION_FROM = ’ALL’
PICK_ATOMS SELECTION_SEGMENT = 1’ ’1’, SELECTION_STATUS = ’INITIALIZE’
PICK_ATOMS SELECTION_SEGMENT = ’10’ ’10’, SELECTION_STATUS = ’ADD’

Mutate the selected residues into HSD residues (neutral HIS):
MUTATE_MODEL RESIDUE_TYPE = ’HSD’

Add the mutated sequence to the alignment arrays (it is now the second
sequence in the alignment):
SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fas-1’

Generate molecular topology for the mutant:
GENERATE_TOPOLOGY SEQUENCE = ’1fas-1’

Transfer all the coordinates you can from the template native structure
to the mutant (this works even if the order of atoms in the native PDB
file is not standard):

TRANSFER_XYZ

Build the remaining unknown coordinates for the mutant:
BUILD_MODEL INITIALIZE_XYZ = off

Write the mutant to a file:
WRITE_MODEL FILE = ’1fas-1.atm’

2.2.11 MAKE_TOPOLOGY_MODEL — make a subset topology library

Options:
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9

Description: This command makes a residue topology library from the most detailed CHARMM topology library,
which contains all atoms, including all hydrogens (corresponding to TOPOLOGY_MODEL = 1). There are
currently ten residue topologies, all of which are defined in library $MODELS_LIB. For example, the default

46 CHAPTER 2. MODELLER COMMANDS

non-hydrogen atom topology is selected by TOPOLOGY_MODEL = 3. For each TOPOLOGY_MODEL and
residue type, the $MODELS_LIB library lists those atoms in the full atom set that are part of the specified
topology. This command works by deleting all the entries that contain non-existing atoms from the original
topology file. One must carefully test topology files produced in this way. Library $RADII L.IB must specify
atomic radii for each atom in each residue type for each topology model. TOPOLOGY_MODEL must be an
integer from 1 to 10. For more information about the topology library, see the FAQ Section 1.9, Questions 17
and 18.

Example:

Example for: MAKE_TOPOLOGY_MODEL, WRITE_TOPOLOGY_MODEL

This creates a topology library for heavy atoms from the
CHARMM all-atom topology library:

Read CHARMM all-atom topology library:
READ_TOPOLOGY FILE = ’*${LIB}/top.1lib’

Keep only heavy atoms (TOPOLOGY_MODEL = 3)
MAKE_TOPOLOGY_MODEL TOPOLOGY_MODEL = 3

Write the resulting topology library to a new file:
WRITE_TOPOLOGY_MODEL FILE = ’top_heav.lib’

2.2.12 WRITE TOPOLOGY_MODEL — write residue topology library

Options:
FILE = (string: 1) ’default’ partial or complete filename
OUTPUT_DIRECTORY = (string:1) 2 output directory

Description: This command writes a residue topology library to the specified file. It is usually used after
MAKE_TOPOLOGY_MODEL.

Example: See MAKE_TOPOLOGY_MODEL command.

2.3. HANDLING OF ATOMIC COORDINATES

2.3 Handling of atomic coordinates

47

48 CHAPTER 2. MODELLER COMMANDS

2.4 Comparison and searching of sequences and structures

This section describes the format of the alignment file and commands for reading, writing, making, analyzing and
using the alignments of sequences and structures (pairwise and multiple). It also includes a description of the
command for searching a sequence database. For the underlying dynamic programming methods see Section 5.1.

2.4.1 Alignment file format

The preferred format for comparative modeling is related to the PIR database format:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1l

structureX:5fd1:1 : :106 : :ferredoxin:Azotobacter vinelandii: 1.90: 0.19
AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA
EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx
sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-———————————————=—

The first line of each sequence entry specifies the protein code after the >P1; line identifier. The line identifier
must occur at the beginning of the line. For example, 1fdx is the protein code of the first entry in the alignment
above. The protein code corresponds to the ALIGN_CODES variable.

The second line of each entry contains information necessary to extract atomic coordinates of the segment from
the original PDB coordinate set. The fields in this line are separated by colon characters, . The fields are as
follows:

Field 1: A specification of whether or not 3D structure is available and of the type of the method used to obtain
the structure (structureX, X-ray; structureN, NMR; structureM, model; sequence, sequence). Only
structure is also a valid value.

Field 2: The PDB code. While the protein code in the first line of an entry, which is used to identify the entry, must
be unique for all proteins in the file, the PDB code in this field, which is used to get structural data, does
not have to be unique. It is a good idea to use the PDB code with an optional chain identifier as the protein
code. The PDB code corresponds to the ATOM_FILES variable and can also contain the full atom filename,
directory included.

Fields 3-6: The residue identifiers (see below) for the first (fields 3-4) and last residue (fields 5-6) of the sequence in the
subsequent lines. There is no need to edit the coordinate file if a contiguous sequence of residues is required
— simply specify the beginning and ending residues of the required contiguous region of the chain. If the
beginning residue is not found, no segment is read in. If the ending residue identifier is not found in the
coordinate file, the last residue in the coordinate file is used. By default, the whole file is read in.

The unspecified beginning and ending residue numbers and chain id’s for a structure entry in an alignment
file are taken automatically from the corresponding atom file, if possible. The first matching sequence in the
atom file that also satisfies the explicitly specified residue numbers and chain id’s is used. A residue number

is not specified when a blank character or a dot, ‘.’, is given. A chain id is not specified when a dot, ‘., is
given. This slight difference between residue and chain id’s is necessary because a blank character is a valid
chain id.

Field 7: Protein name. Optional.
Field 8: Source of the protein. Optional.
Field 9: Resolution of the crystallographic analysis. Optional.

Field 10: R-factor of the crystallographic analysis. Optional.

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 49

A residue identifier consists of a residue number and an optional chain identifier. They must be separated by a
colon, ‘. For example, >10I:A’ is residue number >10I’ in chain *A’, and 6’ or ’6:’ is residue number ’6°’ in
a chain without a name. Free format can be used, that is the blank characters are ignored. The residue number
is a string of up to 5 characters long, as found in the PDB atom file and consists of the PDB residue number
proper (22X,A4 in the PDB ATOM record) and PDB residue insertion code (26X, Al). The chain identifier is a
single character, as found in the PDB atom file (21X,A1). A string containing ‘@’ will match any residue number
and chain id. For example, ‘@Q:A’ is the first residue in chain ‘A’ and ‘Q:@’ is the first residue in the coordinate
file. The same residue identifier format is used in several other TOP variables used for residue specification (e.g.,
MODEL_SEGMENT, SELECTION_SEGMENT).

When an alignment file is used in conjunction with structural information, the first two fields must be filled in,
the rest of them can be empty or even missing entirely. If the alignment is not used in conjunction with structural
data, all but the first field can be empty. This means that in comparative modeling, the template structures must
have at least the first two fields specified while the target sequence must only have the first field filled in. Thus, a
simple second line of an entry in an alignment file in the *PIR’ format is

This entry will result in reading from PDB file pdb_file the structure segment corresponding to the sequence
in the subsequent lines of the alignment entry.

The fields that do not exist are assigned blank values. Thus,
structure:pdb_file

is equivalent to
structure:pdb_file:

which will achieve what was probably intended (read in the structure segment from file pdb_file that corre-
sponds to the sequence in the subsequent lines of the alignment entry) only if the chain id is a blank character.

Each sequence must be terminated by the terminating character, “*’.

When the first character of the sequence line is the terminating character, ‘*’, the sequence is obtained from
the specified PDB coordinate file (Section 2.1.4).

Chain breaks are indicated by ‘/’. There should not be more than one chain break character to indicate a single
chain break (use gap characters instead, ‘-’). All residue types specified in $RESTYP_LIB, but not patching residue
types, are allowed; there are on the order of 100 residue types specified in the $RESTYP_LIB library. To add your
own residue types to this library, see Section 1.9, Question 17.

The alignment file can contain any number of blank lines between the protein entries. Comment lines can occur
outside protein entries and must begin with the identifiers ‘C;’ or ‘R;’ as the first two characters in the line.

An alignment file is also used to input non-aligned sequences.

The best way to generate initial alignment files containing PDB sequences, which can later be edited by hand,
is to follow this example:

Specify the PDB and protein codes in the alignment:

SET ATOM_FILES = ’1fdx’ ’5fd1’, ALIGN_CODES = ’1fdx’ ’b5fd1’

READ_MODEL FILE = ’1fdx’, MODEL_SEGMENT = ’@:Q@’ ’X:X’ # Read the whole 1fdx atom file
SEQUENCE_TO_ALI # Copy the residues to the alignment array

READ_MODEL FILE = ’5fd1’, MODEL_SEGMENT = ’1:’ ’63:’ # Read 5fdl atom file from 1-63
SEQUENCE_TO_ALI ADD_SEQUENCE = on # Add this segment to the alignment array

MALIGN GAP_PENALTIES = -500 -300 # align them by sequence

WRITE_ALIGNMENT FILE = ’ferl-seq.ali’

MALIGN3D GAP_PENALTIES = 0.0 2.0 # align them by structure

CHECK_ALIGNMENT # check the alignment for its suitability for modeling
WRITE_ALIGNMENT FILE = ’ferl.ali’

50

CHAPTER 2. MODELLER COMMANDS

2.4.2 READ _ALIGNMENT — read sequences and/or their alignment

Options:

FILE = (string : 1 ’default’ partial or complete filename
g

DIRECTORY = (string:1) ”

directory list (e.g., *dirl:dir2:dir3:./:/?)

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment
ALIGNMENT_FORMAT = (string: 0) ’PIR’ format of the alignment file: ’PIR’ | ’PAP’ |

’QUANTA’ | >INSIGHT’ | >FASTA’

REMOVE_GAPS = (logical : 1) on whether to remove all-gap positions in input align-
ment

ADD_SEQUENCE = (logical : 1) off whether to add the new sequences to the existing
alignment

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

Output: MODELLER_STATUS = (integer : 1), NUMB_OF_SEQUENCES, ALIGN_CODES

Description: This command reads the sequence(s) and/or their alignment from a text file. Only sequences with
the specified codes are read in; ALIGN_CODES = ’all’ can be used to read all sequences.

There are several alignment formats:

1.

The ’PIR’ format resembles that of the PIR sequence database. It is described in Section 2.4.1 and is
used for comparative modeling because it allows for additional data about the proteins that are useful
for automated access to the atomic coordinates.

. The *FASTA’ format resembles the *PIR’ format but has a missing second ‘comment’ line and a missing

star at the end of each sequence.

. The ’PAP’ format is nicer to look at but contains less information and is not used by other programs.

When used in conjunction with PDB files, the PDB files must contain exactly the residues in the
sequences in the *PAP’ file; i.e., it is not possible to use only a segment of a PDB file. In addition, the
’PAP’ protein codes must be expandable into proper PDB atom filenames, as described in Section 2.1.4.
The protein sequence can now start in any column (this was limited to column 11 before release 5).

. The *QUANTA’ format can be used to communicate with the QUANTA program. You are not supposed

to mix *QUANTA’ format with any other format because the QUANTA’ format contains residue numbers
which do not occur in the other formats and are difficult to guess correctly.

. The *INSIGHT’ format is very similar to the >PAP’ format and can sometimes be used to communicate

with the INSIGHTII program. When used in conjunction with PDB files, the same rules as for the >PAP’
format apply.

If REMOVE_GAPS = on, positions with gaps in all selected sequences are removed from the alignment.

If ADD_SEQUENCE is on, the new sequences are added to the current ones, otherwise the old sequences are

deleted.
Example:
Example for: READ_ALIGNMENT, WRITE_ALIGNMENT,
READ_ALIGNMENT2, WRITE_ALIGNMENT2,
CHECK_ALIGNMENT
Read an alignment, write it out in the ’PAP’ format, and
check the alignment of the N-1 structures as well as the
alignment of the N-th sequence with each of the N-1 structures.

SET OUTPUT_CONTROL = 11110

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 51

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’
WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’
WRITE_ALIGNMENT FILE = ’toxin.fasta’, ALIGNMENT_FORMAT = ’FASTA’
CHECK_ALIGNMENT

2.4.3 READ_ALIGNMENT?2 — read 2nd alignment

Options:

FILE = (string: 1) ’default’ partial or complete filename

DIRECTORY = (string:1) 2 directory list (e.g., *dirl:dir2:dir3:./:/?)

ALIGN_CODES?2 = (string: 0) ’all’ align codes for alignment2

ALIGNMENT_FORMAT = (string : 0) ’PIR’ format of the alignment file: ’PIR’ | *PAP’ |
’QUANTA’ | ’INSIGHT’ | *FASTA’

REMOVE_GAPS = (logical : 1) on whether to remove all-gap positions in input align-
ment

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

Output: MODELLER_STATUS = (integer : 1)

Description: This command reads the sequences and/or their alignment from a text file into the second alignment
array. The two alignments can be compared by the COMPARE_ALIGNMENTS command.

Example: See READ_ALIGNMENT command.

2.4.4 CHECK_ALIGNMENT — check alignment for modeling

Options:
ATOM_FILES = (string: 0)) complete or partial atom filenames
ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

Description: This command evaluates an alignment to be used for comparative modeling. It uses two criteria:

First, it checks the alignment of the template structures (all but the last entry in the alignment): For each
pairwise superposition of the templates, it reports those equivalent pairs of C, atoms that are more than
6A away from each other. Such pairs are almost certainly misaligned. The pairwise superpositions are done
using the C, atoms and the given alignment.

Second, the command checks the alignment of the target sequence (the last entry in the alignment) with each
of the templates: For all consecutive pairs of C, atoms in the target, it calculates the distance between the
two equivalent C,, atoms in each of the templates. If the distance is longer than 84, it is reported. In such a
case, the alignment between the template and the target is almost certainly incorrect.

Example:

Example for: READ_ALIGNMENT, WRITE_ALIGNMENT,
READ_ALIGNMENT2, WRITE_ALIGNMENT2,
CHECK_ALIGNMENT

Read an alignment, write it out in the ’PAP’ format, and
check the alignment of the N-1 structures as well as the
alignment of the N-th sequence with each of the N-1 structures.

52 CHAPTER 2. MODELLER COMMANDS

SET OUTPUT_CONTROL = 11110

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’
WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’
WRITE_ALIGNMENT FILE = ’toxin.fasta’, ALIGNMENT_FORMAT = ’FASTA’
CHECK_ALIGNMENT

2.4.5 COLOR_ALN_MODEL — color MODEL according to alignment

Description: This command colors MODEL according to a given alignment between MODEL and a sequence.
MODEL has to be the first protein in the alignment. The second protein can be any sequence, with or
without known structure. The MODEL can be displayed on the screen, colored by ‘the fourth parameter’
and inspected for the structural context of deletions and insertions. This is useful in optimizing the alignment
for comparative modeling. The isotropic temperature factors in MODEL are set as follows:

e 0, for those regions that have residues in both MODEL and the sequence (blue in RASMOL; light green
in QUANTA);

e 1, for the two residues that span regions occurring in the sequence but not in MODEL (green in RASMOL;
pink in QUANTA);

e 2, regions that occur in MODEL but are deleted from the sequence (red in RASMOL; bright green in
QUANTA).

Example:

Example for: COLOR_ALN_MODEL
Two demos:

1) Use a given alignment to color a structure according to
insertions and deletions in a pairwise alignment.

H o H B H

2) Superpose two 3D structure and do (1).
Demo 1:

READ_MODEL FILE = ’1nbt’

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1nbt’ ’1fas’, ;
REMOVE_GAPS = on

COLOR_ALN_MODEL

WRITE_MODEL FILE = ’1nbt-1.clr’

Demo 2:

READ_MODEL FILE = ’1nbt’, MODEL_SEGMENT = ’1:A’ ’66:A°

SEQUENCE_TO_ALI ALIGN_CODES = ’1nbt’, ATOM_FILES = ALIGN_CODES

READ_MODEL FILE = ’1fas’, MODEL_SEGMENT = ’1:’ ’61:’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fas’, ;
ATOM_FILES = ALIGN_CODES

ALIGN GAP_PENALTIES_1D= -600 -400

MALIGN3D GAP_PENALTIES_3D= 0 3.0

WRITE_ALIGNMENT FILE = ’color_aln_model.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 53

READ_MODEL FILE = ’1nbt’, MODEL_SEGMENT = ’1:A’ ’66:A°
COLOR_ALN_MODEL
WRITE_MODEL FILE = ’1nbt-2.clr’

2.4.6 COMPARE_ALIGNMENTS — compare two alignments

Requirements: READ_ALIGNMENT & READ ALIGNMENT?2

Description: This command compares two pairwise alignments read by the READ_ALIGNMENT and READ _-
ALIGNMENT?2 commands. The alignment of the first sequence with the second sequence in ALIGNMENT
is evaluated with respect to ALIGNMENT2. The numbers are not symmetric; i.e., they will change if the
sequences or alignments are swapped. The output in the log file is self-explanatory.

Example:

Example for: COMPARE_ALIGNMENTS, SEQUENCE_TO_ALI

Compare two alignments of two proteins each. In this case, the first
alignment is a sequence-sequence alignment and the second alignment
is a structure-structure alignment.

ATOM_FILES and ALIGN_CODES have to be set explicitly so that the alignment
file has this information (ATOM_FILES is copied to the alignment array
during SEQUENCE_TO_ALI):

SET OUTPUT_CONTROL =1 1110

Generate and save sequence-sequence alignment:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ALIGN_CODES = ’1fas’, ATOM_FILES = ALIGN_CODES

READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’2ctx’, ATOM_FILES = ALIGN_CODES
ALIGN GAP_PENALTIES_1D= -600 -400

WRITE_ALIGNMENT FILE = ’toxin-seq.ali’

Generate and save structure-structure alignment:
ALIGN3D GAP_PENALTIES_3D= 0 2.0
WRITE_ALIGNMENT FILE = ’toxin-str.ali’

SET ADD_SEQUENCE = off

Compare the two pairwise alignments:

READ_ALIGNMENT FILE = ’toxin-seq.ali’, ALIGN_CODES = ’all’
READ_ALIGNMENT2 FILE = ’toxin-str.ali’, ALIGN_CODES2 = ’all’
COMPARE_ALIGNMENTS

2.4.7 SEQUENCE_TO_ALI — copy MODEL sequence and coordinates to alignment

Options:
ADD_SEQUENCE = (logical : 1) off whether to add the new sequences to the existing
alignment

CHAPTER 2. MODELLER COMMANDS

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment
ATOM_FILES = (string: 0)) complete or partial atom filenames
OUTPUT_DIRECTORY = (string:1) 2 output directory

Output: NUMB_OF_SEQUENCES, ALIGN_CODES, ATOM_FILES

Description: This command copies the sequence and coordinates of the MODEL to the alignment arrays.

If ADD_SEQUENCE is on the sequence is added to the sequences that are already in the alignment arrays,
otherwise it becomes the only sequence in those arrays.

When sequence i is added, the corresponding elements of ALIGN_CODES and ATOM_FILES are used to set
the protein and PDB code fields in the alignment file, respectively.

Example: See COMPARE_ALIGNMENTS command.

2.4.8 WRITE ALIGNMENT — write sequences and/or their alignment

Options:

FILE = (string: 1) ’default’ partial or complete filename

OUTPUT_DIRECTORY = (string:1)) output directory

ATOM_FILES = (string: 0) 2 complete or partial atom filenames

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

ALIGNMENT_FORMAT = (string : 0) ’PIR’ format of the alignment file: ’PIR’ | ’PAP’ |
’QUANTA’ | INSIGHT’ | *FASTA’

ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences

ALIGN_ALIGNMENT = (logical : 1) off writing out an alignment of alignments (for *)

ALIGNMENT_FEATURES = (string: 0) > INDICES what alignment features to write out: >ACCURACY’

CONSERVATION’ | °HELIX’ | °BETA’ | °’ACCESSIBILITY’ |

’STRAIGHTNESS’ | ’CONSERVATION’ | ’INDICES’
| ’ALL’ | ’GAPS’

CUT_OVERHANGS = (logical : 1) off whether to cut overhangs at OVERHANG
residues or not

OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons

HETATM_IO = (logical : 1) off whether to read HETATM coordinates

WATERL_IO = (logical : 1) off whether to read water coordinates

HYDROGEN_IO = (logical : 1) off whether to read hydrogen coordinates

ATOM_FILES_DIRECTORY = (string:1) ./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/7)

Description: This command writes the whole alignment to a text file.

The PAP’ format, which corresponds to a relatively nice looking alignment, has several additional formatting
options that can be selected by the ALIGNMENT_FEATURES variable. This scalar variable can contain any
combination of the following keywords:

e ’INDICES’, the alignment position indices;
e ’CONSERVATION’, a star for each absolutely conserved position;

e ’ACCURACY’, the alignment accuracy indices, scaled between 0-9, as calculated by ALIGN_CONSENSUS;

e "HELIX’, average content of helical residues for structures 1 — ALIGN_BLOCK at each position, 0 for 0%
and 9 for 100%, as calculated by ALIGN2D.

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 55

e ’BETA’, average content of f-strand residues for structures 1 — ALIGN_BLOCK at each position, 0 for
0% and 9 for 100%, as calculated ‘by ALIGN2D.

e ’ACCESSIBILITY’, average relative sidechain buriedness for structures 1 — ALIGN_.BLOCK, 0 for 0%
(100% accessibility) and 9 for 100% (0% accessibility), as calculated by ALIGN2D;

e ’STRAIGHTNESS’, average mainchain straightness structures 1 — ALIGN_BLOCK at each position 0 for
0% and 9 for 100%, as calculated by ALIGN2D.

Options HELIX’, ’BETA’, *ACCESSIBILITY’, and >STRAIGHTNESS’ are valid only after executing command
ALIGN2D, where the corresponding quantities are defined. They refer to the 3D profile defined for the
first ALIGN_BLOCK structures (run ALIGN2D with FIT = off to prepare these structural data with-
out changing the input alignment). Similarly, the ACCURACY’ option is valid only after the CONSEN-
SUS_ALIGNMENT command.

ALIGN_ALIGNMENT and ALIGN_BLOCK are used to ensure correct indication of identical alignment positions,
depending on whether sequences or two blocks of sequences were aligned: For sequences (ALIGN_ALIGNMENT
= off and ALIGN_BLOCK is ignored), a ’*’ indicating a conserved position is printed where all sequences
have the same residue type. For blocks (ALIGN_ALIGNMENT = on and ALIGN_BLOCK indicates the last
sequence of the first block), a **’ is printed only where the two blocks have the same order of residue types
(there has to be the same number of sequences in both blocks). The blocks option is useful when comparing
two alignments, possibly aligned by the ALIGN command.

If CUT_OVERHANGS is on, overhangs longer than OVERHANG residues are cut from the alignment. In
such a case, the HETATM_10, WATER_IO, HYDROGEN_IO, and ATOM_FILES_DIRECTORY keywords also
apply because the beginning and ending residue numbers for the ‘structure’ entries in the alignment are
renumbered automatically by reading the appropriate atom files.

Example: See READ_ALIGNMENT command.

2.4.9 DESCRIBE — describe proteins

Options:
ATOM_FILES = (string: 0) 2 complete or partial atom filenames
ATOM_FILES_DIRECTORY = (string:1) °’./’ input atom files directory list (e.g,
’dirl:dir2:dir3:./:/7)
ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

Requirements: [alignment)

Description: This command outputs basic data about the proteins whose atom filenames are specified by ATOM _-
FILES or ALIGN_CODES. An alternative specification of the proteins to be described can be provided by the
alignment in memory; i.e., READ_ALIGNMENT followed by DESCRIBE will describe all the proteins
in the alignment. This command is useful for preparation before comparative modeling because it summarizes
disulfides, cis-prolines, charges, chain breaks, etc. When an alignment is given, results depending only on the
amino acid sequences are still written out even if some atom files do not exist.

Example:

Example for: DESCRIBE
Describe the sequences and structures in the alignment.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’
DESCRIBE

96 CHAPTER 2. MODELLER COMMANDS

2.4.10 ID _TABLE — calculate percentage sequence identities

Options:
ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment
MATRIX_FILE = (string : 1) >family.mat’ the filename of the pairwise distance matrix
OUTPUT_DIRECTORY = (string: 1) 7 output directory

Requirements: alignment

Description: This command calculates percentage residue identities for all pairs of sequences in the current
alignment. The percentage residue identity is defined as the number of identical residues divided by the
length of the shorter sequence.

The ALIGN_CODES variable is only used for output, not in calculations, so it does not have to be set.

In addition to the output in the log file, this routine creates file OUTPUT_DIRECTORY/MATRIX_FILE with
pairwise sequence distances that can be used directly as the input to the tree making programs of the PHYLIP
package, such as KI1TscH [?], and also for the DENDROGRAM and PRINCIPAL_COMPONENTS
commands. A more general version of this command, which allows a user specified measure for residue-residue
differences is SEQUENCE_COMPARISON.

Example:

Example for: ID_TABLE, SEQUENCE_COMPARISON, PRINCIPAL_COMPONENTS, DENDROGRAM
Pairwise sequence identity between sequences in the alignment.

Read all entries in this alignment:
READ_ALIGNMENT FILE = ’toxin.ali’

Calculate pairwise sequence identities:
ID_TABLE MATRIX_FILE = ’toxin_id.mat’

Calculate pairwise sequence similarities:

SET RR_FILE = ’$(LIB)/asl.sim.mat’, MAX_GAPS_MATCH = 1

READ_MODEL FILE = ’2ctx’, MODEL_SEGMENT = ’1:’ ’71:’

SEQUENCE_COMPARISON MATRIX_FILE = ’toxin.mat’, VARIABILITY_FILE = ’toxin.var’
WRITE_MODEL FILE = ’2ctx.var’

Do principal components clustering using sequence similarities:
PRINCIPAL_COMPONENTS MATRIX_FILE = ’toxin.mat’, FILE = ’toxin.princ’

Dendrogram in the log file:
DENDROGRAM

2.4.11 SEQUENCE_COMPARISON — compare sequences in alignment

Options:
RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file
DIRECTORY = (string:1) 2 directory list (e.g., *dirl:dir2:dir3:./:/?)
MATRIX_FILE = (string : 1) ’family.mat’ the filename of the pairwise distance matrix

VARIABILITY_FILE = (string: 1) ’undefined’ output filename

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 57

OUTPUT_DIRECTORY = (string:1) 2 output directory
ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment
MAX_GAPS_MATCH = (integer : 1) 1

Description: The pairwise similarity of sequences in the current alignment is evaluated using a user specified
residue-residue scores file.

The residue-residue scores, including gap-residue, and gap-gap scores, are read from file RR_FILE. The
sequence pair score is equal to the average pairwise residue-residue score for all alignment positions that have
at most MAX_GAPS_MATCH gaps (1 by default). If the gap—residue and gap—gap scores are not defined in
MATRIX_FILE, they are set to the worst and best residue-residue score, respectively. If MATRIX_FILE is a
similarity matrix, it is converted into a distance matrix (z' = —z + Tmax)-

The comparison matrix is written in the PHYLIP format to file MATRIX_FILE.

The family variability as a function of alignment position is calculated as the RMS deviation of all residue —
residue scores at a given position, but only for those pairs of residues that have at most MAX_GAPS_MATCH
gaps (0, 1, or 2). The variability is written to file VARIABILITY_FILE, as is the number of pairwise comparisons
contributing to each positional variability.

Example: See ID_TABLE command.

2.4.12 DENDROGRAM — clustering

Options:
MATRIX_FILE = (string : 1) ’family.mat’ the filename of the pairwise distance matrix

Description: This command calculates a clustering tree from the input matrix of pairwise distances. This matrix
must be in the PHYLIP format and can be produced by the ID_TABLE, SEQUENCE_COMPARISON,
or COMPARE commands. The weighted pair-group average clustering method is used.

The tree is written to the log file.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See ID_TABLE command.

2.4.13 PRINCIPAL_ COMPONENTS — clustering

Options:
MATRIX_FILE = (string : 1) ’family.mat’ the filename of the pairwise distance matrix
FILE = (string: 1) ’default’ output file

Description: This command calculates principal components clustering for the input matrix of pairwise distances.
This matrix must be in the PHYLIP format and can be produced by the ID_TABLE, SEQUENCE _-
COMPARISON, or COMPARE commands.

The projected coordinates p and g are written to file FILE. The output file can be used with ASGL to produce
a principal components plot.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See ID_TABLE command.

58 CHAPTER 2. MODELLER COMMANDS

2.4.14 ALIGN — align two (blocks of) sequences

Options:

RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file

DIRECTORY = (string:1)) directory list (e.g., *dirl:dir2:dir3:./:/?)

GAP_PENALTIES_1D = (real : 2) -900 -50 gap creation and extension penalties for se-
quence/sequence alignment

ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

MATRIX_OFFSET = (real: 1) 0.00 substitution matrix offset for local alignment

OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons

LOCAL_ALIGNMENT = (logical : 1) off whether to do local as opposed to global align-
ment

ALIGN_WHAT = (string: 1) ’BLOCK’ what to align in ALIGN; BLOCK’ | ’>ALIGNMENT’
| "LAST’

READ_WEIGHTS = (logical : 1) off whether to read the whole NxM weight matrix for
ALIGN*

WRITE_-WEIGHTS = (logical : 1) off whether to write the whole NxM weight matrix
for ALIGN*

INPUT_WEIGHTS_FILE = (string : 1) z
OUTPUT_WEIGHTS_FILE = (string:1)

Output: MODELLER_STATUS = (integer : 1)

Description: This command aligns two blocks of sequences.

The two blocks of sequences to be aligned are sequences 1 to ALIGN_BLOCK and ALIGN_BLOCK+1 to the last
sequence. The sequences within the two blocks should already be aligned; their alignment does not change.

The command can do either the global (similar to [?]; LOCAL_ALIGNMENT = off) or local dynamic pro-
gramming alignment (similar to [?]; LOCAL_ALIGNMENT = on).

For the global alignment, set overhang length OVERHANG to more than 0 so that the corresponding number
of residues at either of the four termini won’t be penalized by any gap penalties (this makes it a pseudo local
alignment).

To speed up the calculation, set OFF_DIAGONAL to a number smaller than the shortest sequence length. The
alignments matching residues ¢ and j with |i — j| > OFF_DIAGONAL are not considered at all in the search
for the best alignment.

The gap initiation and extension penalties are specified by GAP_PENALTIES_1D. The default values of -900
-50 for the ’as1.sim.mat’ similarity matrix were found to be optimal for pairwise alignments of sequences
that share from 30% to 45% sequence identity (RS and AS, in preparation).

The residue type — residue type scores are read from file RR_FILE. The routine automatically determines
whether it has to maximize similarity or minimize distance.

MATRIX_OFFSET applies to local alignment only and influences its length. MATRIX_OFFSET should be
somewhere between the lowest and highest residue—residue scores. A smaller value of this parameter will
make the local alignments shorter when distance is minimized, and longer when similarity is maximized.
This works as follows: The recursively constructed dynamic programming comparison matrix is reset to
0 at position 4,j when the current alignment score becomes larger (distance) or smaller (similarity) than
MATRIX_OFFSET. Note that this is equivalent to the usual shifting of the residue-residue scoring matrix in
the sense that there are two combinations of GAP_PENALTIES_1D and MATRIX_OFFSET values that will give
exactly the same alignments irrespective of whether the matrix is actually offset (with 0 used to restart local
alignments in dynamic programming) or the matrix is not offset but MATRIX_OFFSET is used as the cutoff

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 59

for restarting local alignments in dynamic programming. For the same reason, the matrix offset does not have
any effect on the global alignments if the gap extension penalty is also shifted for half of the matrix offset.

The position—position score is an average residue-residue score for all possible pairwise comparisons between
the two blocks (n x m comparisons are done, where n and m are the number of sequences in the two blocks,
respectively). The first exception to this is when ALIGN_WHAT is set to ?ALIGNMENTS’, in which case the two
alignments defined by ALIGN_BLOCK are aligned; i.e., the score is obtained by comparing only equivalent
positions between the two alignment blocks (only n comparisons are done, where n is the number of sequences
in each of the two blocks). This option is useful in combination with COMPARE_ALIGNMENTS and
WRITE_ALIGNMENT for evaluation of various alignment parameters and methods. The second excep-
tion is when ALIGN_WHAT is set to LAST’, in which case only the last sequences in the two blocks are used
to get the scores. In ’block’, ’alignment’, and ’last’ comparisons, penalty for a comparison of a gap
with a residue during the calculation of the scoring matrix is obtained from the score file (gap—gap match
should have a score of 0.0).

Only the 20 standard residue types, plus Asx (changes to Asn) and Glx (changes to Gln) are recognized. Every
other unrecognized residue, except for a gap and a chain break, changes to Gly for comparison purposes.

If you receive an error message to increase the MAXRES constant, you can try to increase the gap penalties first.
Here and elsewhere in MODELLER, MAXRES is both the maximal number of residues in a protein as well as
the maximal length of an alignment. If the length of the alignment arrays is too small, MODELLER_STATUS
becomes 1 (Section 2.1.3).

For the time being, this and the other alignment commands (MALIGN, ALIGN2D, ALIGN3D, and
MALIGN3D) remove chain break information from the CALN array, which means that chain breaks are not
retained when the alignment is written to a file after executing these commands.

Example:

Example for: ALIGN

This will read two sequences, align them, and write the alignment
to a file:

SET OUTPUT_CONTROL =111 11
READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’
The asl.sim.mat similarity matrix is used by default:

ALIGN GAP_PENALTIES_1D = -600 -400
WRITE_ALIGNMENT FILE = ’toxin-seq.ali’

2.4.15 ALIGN2D — align sequences with structures

Options:

RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file

DIRECTORY = (string:1) 7 directory of RR_FILE

GAP_PENALTIES_1D = (real : 2) -900 -50 gap creation and extension penalties for se-
quence/sequence alignment

GAP_PENALTIES 2D = (real : 8) 0.35 1.2 0.9 1.2 gap penalties for sequence/structure alignment:

0.6 8.6 1.2 0.0 helix, beta, accessibility, straightness, and CA—

CA distance factor, dst min, dst power, t ; best
U,V=-450,0

ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

60

CHAPTER 2. MODELLER COMMANDS
MATRIX_OFFSET = (real: 1) 0.00 substitution matrix offset for local alignment
OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons
LOCAL_ALIGNMENT = (logical : 1) off whether to do local as opposed to global align-
ment
FIT = (logical: 1) on whether to align
READ_WEIGHTS = (logical : 1) off whether to read the whole NxM weight matrix for
ALIGN*
WRITE_WEIGHTS = (logical : 1) off whether to write the whole NxM weight matrix
for ALIGN*

INPUT_WEIGHTS_FILE = (string: 1) »
OUTPUT_WEIGHTS_FILE = (string : 1) ?9

Output: MODELLER_STATUS = (integer : 1)

Description: This command aligns a block of sequences (second block) with a block of structures (first block). It

is the same as the ALIGN command except that a variable gap opening penalty is used. This gap penalty
depends on the 3D structure of all sequences in block 1. The variable gap penalty can favor gaps in exposed
regions, avoid gaps within secondary structure elements, favor gaps in curved parts of the mainchain, and
minimize the distance between the two C, positions spanning a gap. The ALIGN2D command is preferred
for aligning a sequence with structure(s) in comparative modeling because it tends to place gaps in a better
structural context. See Section 5.1.2 for the dynamic programming algorithm that implements the variable
gap penalty. GAP_PENALTIES_2D specifies parameters wy, ws, ws, Wo, Wp, do, ¥, and ¢ (Section 5.1.2).
The default gap penalties GAP_PENALTIES_1D (—450,0) and GAP_PENALTIES_2D (0.35, 1.2, 0.9, 1.2, 0.6,
8.6, 1.2, 0.0) as well as the RR_FILE substitution matrix (’asl.sim.mat’) were found to be optimal in
pairwise alignments of structures and sequences sharing from 30% to 45% sequence identity (RS and AS, in
preparation).

— move to back

The linear gap penalty function for inserting a gap in block 1 of structures is: ¢ = f1(H,S,B,C)u + lv
where u and v are the usual gap opening and extension penalties, [is gap length, and f; is a function
that is at least 1, but can be larger to make gap opening more difficult in the following circumstances:
between two consecutive (i.e., i,4 + 1) helical positions, two consecutive S-strand positions, two consecutive
buried positions, or two consecutive positions where the mainchain is locally straight. This function is
fi =14 [wgH;Hi11 +wsS;Sit1 + wpB;Biy1 + wecCiCiy1], H; is the fraction of helical residues at position 4
in block 1, S; is the fraction of g-strand residues at position i in block 1, B; is the average relative sidechain
buriedness of residues at position 4 in block 1, and C; is the average straightness of residues at position &
in block 1. See Section ?? for the definition of these features. The original straightness is modified here by
assigning maximal straightness of 1 to all residues in a helix or a S-strand.

The linear gap penalty function for opening a gap in block 2 of sequences is:
g = f2(H,S,B,C,D)u + lv where fy is a function that is at least 1, but can be larger to make the gap
opening in block 2 more difficult in the following circumstances: when the first gap position is aligned
with a helical residue, a f-strand residue, a buried residue, extended mainchain, or when the whole gap
in block 2 is spanned by two residues in block 1 that are far apart in space. This function is fo =
1+ [wgH; + wsS; + wpB; + weCi + wpy/d —d,]. d is the distance between the two C, atoms spanning
the gap, averaged over all structures in block 1 and d, is the distance that is small enough to correspond to
no increase in the opening gap penalty (e.g., 8.6A).

When FIT is off, no alignment is done and the routine returns only the average structural information, which
can be written out by the WRITE_ALIGNMENT command.

Example:

Demonstrating ALIGN2D, aligning with variable gap penalty

SET OUTPUT_CONTROL =1 1111

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 61

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

Read aligned structure(s):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’
SET ADD_SEQUENCE = on, ALIGN_BLOCK = NUMB_OF_SEQUENCES

Read aligned sequence(s):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ALIGN_CODES ’1nbt’

Structure sensitive variable gap penalty sequence-sequence alignment:
SET OVERHANG = 0

SET RR_FILE = ’$(LIB)/id.sim.mat’

SET GAP_PENALTIES_1D = -450 0O

SET GAP_PENALTIES_2D = 0.35 1.2 0.9 1.2 0.6 8.6 1.2 0.0

ALIGN2D
WRITE_ALIGNMENT FILE = ’align2d.ali’, ALIGNMENT_FORMAT = ’PIR’,
WRITE_ALIGNMENT FILE = ’align2d.pap’, ALIGNMENT_FORMAT = ’PAP’, ;

ALIGNMENT_FEATURES=’INDICES HELIX BETA STRAIGHTNESS ACCESSIBILITY CONSERVATION’
CHECK_ALIGNMENT

Color the first template structure according to gaps in alignment:

READ_ALIGNMENT FILE = ’align2d.ali’, ALIGN_CODES = ’2ctx’ ’1mnbt’, ;
ALIGNMENT_FORMAT = ’PIR’, ADD_SEQUENCE = off, REMOVE_GAPS = on

READ_MODEL MODEL_SEGMENT = ’2ctx’, FILE = ’2ctx’

COLOR_ALN_MODEL

WRITE_MODEL FILE = ’2ctx.aln.pdb’

Color the first template structure according to secondary structure:
WRITE_DATA OUTPUT = ’SSM BISO_SSM’, FILE = ’2ctx’
WRITE_MODEL FILE = ’2ctx.ssm.pdb’

Superpose the target structure onto the first template:
READ_MODEL2 FILE = ’1nbt.pdb’, MODEL2_SEGMENT = ’1inbt’ ’1nbt’
PICK_ATOMS ATOM_TYPES = ’CA’

SUPERPOSE

WRITE_MODEL2 FILE = ’1nbt.fit.pdb’

2.4.16 MALIGN — align two or more sequences

Options:

RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file

DIRECTORY = (string:1)) directory list (e.g., dirl:dir2:dir3:./:/?)

GAP_PENALTIES_1D = (real : 2) -900 -50 gap creation and extension penalties for se-
quence/sequence alignment

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences

MATRIX_OFFSET = (real: 1) 0.00 substitution matrix offset for local alignment

OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons

LOCAL_ALIGNMENT = (logical : 1) of f whether to do local as opposed to global align-
ment

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

62 CHAPTER 2. MODELLER COMMANDS

Output: MODELLER_STATUS = (integer : 1)

Description: This command performs a multiple sequence alignment. The sequences to be aligned are the se-
quences in the current alignment arrays. The command uses the dynamic programming method for the best
sequence alignment, given the gap initiation and extension penalties specified by GAP_PENALTIES_1D, and
residue type weights read from file RR_FILE. See command ALIGN for more information.

The algorithm for the multiple alignment is as follows. First, sequence 2 is aligned with sequence 1 (i.e., block
of sequences from 1-ALIGN_BLOCK). Next, sequence 3 is aligned with an average of the aligned sequences 1
and 2; i.e., the weight matrix is an average of the weights 1-3 and 2-3. For this averaging, the gap-residue
and gap—gap weights are obtained from the residue-residue weight matrix file, not from gap penalties. If the
corresponding weights are not in the file, they are set to the worst and best residue—residue score, respectively.

See instructions for ALIGN for more details.

Example:

Example for: MALIGN

This will read all sequences from a file, align them, and write
the alignment to a new file:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

MALIGN GAP_PENALTIES_1D= -600 -400
WRITE_ALIGNMENT FILE = ’toxin-seq.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.17 ALIGN_CONSENSUS — consensus sequence alignment

Options:

GAP_PENALTIES_1D = (real : 2) -900 -50 gap creation and extension penalties for se-
quence/sequence alignment

ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

READ_WEIGHTS = (logical : 1) off whether to read the whole NxM weight matrix for
ALIGN*

WRITE_WEIGHTS = (logical : 1) off whether to write the whole NxM weight matrix
for ALIGN*

INPUT_WEIGHTS_FILE = (string : 1) z
OUTPUT_WEIGHTS_FILE = (string:1)

Output: MODELLER STATUS = (integer : 1)

Description: This command is similar to ALIGN except that a consensus alignment of two blocks of sequences
is produced. A consensus alignment is obtained from a consensus similarity matrix using the specified gap
penalties and the global dynamic programming method. The consensus similarity matrix is obtained by
aligning the two blocks of sequences many times with different parameters and methods and counting how
many times each pair was aligned. This command is still experimental and no detailed description is given
at this time.

This command also produces the alignment accuracy that can be printed out by the WRITE_ALIGNMENT
command in the *PAP’ format (0 inaccurate, 9 accurate). If the gap initiation penalty is 0, the gap extension
penalty of say 0.4 means that only those positions will be equivalenced that were aligned in at least 80% of
the individual alignments (i.e., 2 times 0.40).

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 63

Example:

Example for: ALIGN_CONSENSUS

This will read 2 sequences and prepare a consensus alignment
from many different pairwise alignments.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

ALIGN_CONSENSUS GAP_PENALTIES_1D= 0 0.4, ALIGN_BLOCK = 1
WRITE_ALIGNMENT FILE = ’toxin-seq.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.18 SUPERPOSE — superpose MODEL2 on MODEL given alignment

Options:

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

FIT = (logical : 1) on whether to superpose

SUPERPOSE_REFINE = (logical : 1) of f whether to refine the superposition

RMS_CUTOFFS = (real : 11) 3.5 3.5 60 60 15 60 only the first element is used for calculating the
60 60 60 60 60 cutoff RMS and DRMS measures

REFERENCE_ATOM = (string: 1) 7 reference atom name in SUPERPOSE

REFERENCE_DISTANCE = (real : 1) 3.5 cutoff for selecting reference positions in SUPER-

POSE
SWAP_ATOMS_IN_RES = (string: 1) 2 minimize RMS by swapping atoms in these

residues (1 char code: 'DEFHLNQRVY’)

Requirements: MODEL & MODEL?2 [& alignment]

Description: This command superposes MODEL2 on MODEL, without changing the alignment.

If an alignment is in memory, it is used to obtain the equivalent atoms. MODEL must be the first sequence
in the alignment, MODEL2 must be the second sequence in the alignment. The equivalent atoms are those
selected atoms (set 1) of the MODEL that have equivalently named atoms in MODELZ2; the atom equivalences
are defined in library $ATMEQV LIB. Use the PICK_ATOMS command to select the desired atoms for
superposition. By default, all atoms are selected. If there is no alignment, a 1:1 correspondence between the
residues is assumed.

No fitting is done if FIT = off.
The ALIGN_CODES variable is used only for output, not in calculations.

The RMS_CUTOFFS[1] element is the cutoff used in calculating the cutoff RMS deviations; i.e., those position
and distance RMS deviations that are defined on the equivalent atoms which are less than RMS_CUTOFFS[1]
angstroms away from each other (as superposed using all aligned positions) and those equivalent distances
which are less than RMS_CUTOFFS[1] angstroms different from each other, respectively.

If SUPERPOSE_REFINE is on the refinement of the superposition is done by repeating the fitting with only
those aligned pairs of atoms that are within RMS_CUTOFFS[1] of each other until there is no change in the
number of equivalent positions. This refinement can only remove compared positions, not add them like
ALIGN3D can do. This is useful for comparing equivalent parts of two structures with a fixed alignment
but omitting divergent parts from the superposition and RMs deviation calculation; e.g., comparing a model
with the X-ray structure.

If SUPERPOSE_REFINE is off and REFERENCE_ATOM is non-blank, only those pairs of equivalently named
selected atoms from aligned residues are superposed that come from residues whose REFERENCE_ATOM
atoms are closer than REFERENCE_DISTANCE A to each other.

64 CHAPTER 2. MODELLER COMMANDS

When MODEL and MODEL2 have exactly the same atoms in the same order, one can set SWAP_ATOMS_IN_RES
to any combination of single character amino acid residue codes in DEFHLNQRVY. Certain atoms (see below) in
the specified sidechains of MODEL?2 are then swapped to minimize their RMS deviation relative to MODEL.
The labelling resulting in the lowest RMS deviation is retained. The following swaps are attempted:

Residue Swap(s)

D OD1, OD2
E OE1, OE2
F CD1, CD2
CE1, CE2
ND1, CD2
NE2, CE1
OD1, ND2
OE1, NE2
NH1, NH2
CGl1, CG2
CD1, CD2
CEl, CE2

s

K<TIO Z

Example:

Example for: SUPERPOSE

This will use a given alignment to superpose Calpha atoms of
one structure (2ctx) on the other (1fas).

READ_MODEL FILE = ’1fas’

READ_MODEL2 FILE = ’2ctx’

SET ALIGN_CODES = ’1fas’ ’2ctx’

READ_ALIGNMENT FILE = ’toxin.ali’

PICK_ATOMS PICK_ATOMS_SET = 1, ATOM_TYPES = ’CA’
SUPERPOSE

WRITE_MODEL2 FILE = ’2ctx.fit’

Example:

Example for: ALIGN3D, SUPERPOSE
This will align 3D structures of two proteins:
SET OUTPUT_CONTROL =1 1111

First example: read sequences from a sequence file:
READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’
ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

Second example: read sequences from PDB files to eliminate the

need for the toxin.ali sequence file:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’
READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’2ctx’, ;

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 65

ALIGN_CODES = ALIGN_CODES ’2ctx’
ALIGN GAP_PENALTIES_1D= -600 -400
ALIGN3D GAP_PENALTIES_3D= 0 2.0
WRITE_ALIGNMENT FILE = ’toxin-str.ali’

And now superpose the two structures using current alignment to get
various RMS’s:

READ_MODEL FILE = ’1fas’

PICK_ATOMS ATOM_TYPES = ’CA’

READ_MODEL2 FILE = ’2ctx’

SUPERPOSE FIT_ATOMS = ’CA’

Example:

This script illustrates the use of the SWAP_ATOMS_IN_RES
argument to the SUPERPOSE command:

Need to make sure that the topologies of the two molecules
superposed are exactly the same:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’../tutorial-model/1fdx.atm’

SEQUENCE_TO_ALI ALIGN_CODES = ’1fdx’, ATOM_FILES = FILE

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fdx’, ATOM_FILES = ATOM_FILES FILE
GENERATE_TOPOLOGY SEQUENCE = ’1fdx’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

READ_MODEL2 FILE = ’../tutorial-model/1fdx.B99990002’
READ_MODEL2 FILE = ’./1fdx.swap.atm’

SET SWAP_ATOMS_IN_RES = ’?

SUPERPOSE

SET SWAP_ATOMS_IN_RES
SUPERPOSE FIT = off
SET SWAP_ATOMS_IN_RES
SUPERPOSE FIT = on

’DEFHLNQRVY’

1]
-
-

2.4.19 COMPARE — compare 3D structures given alignment

Options:

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

ATOM_FILES = (string: 0) ’? complete or partial atom filenames

ATOM_FILES_DIRECTORY = (string:1) °’./’ input atom files directory list (e.g,
’dirl:dir2:dir3:./:/7)

OUTPUT = (string: 1) ’LONG’ selects output: °’SHORT’ | °LONG’} | °RMS’ |
’DRMS’

MATRIX_FILE = (string : 1) ’family.mat’ the filename of the pairwise distance matrix

COMPARE_MODE = (integer : 1) 3 selects the type of comparison: 1 |1 2 | 3

66

CHAPTER 2. MODELLER COMMANDS
RMS_CUTOFFS = (real : 11) 3.5 3.5 60 60 15 60 cutoffs for RMS, DRMS, Alpha Phi Psi Omega
60 60 60 60 60 chil chi2 chi3 chi4 chib
FIT_ATOMS = (string: 1) ’CA? whether to superpose before comparison
DISTANCE_ATOMS = (string : 2) ’CA’ CcA? atom type used for variability calculations
FIT = (logical : 1) on whether to do pairwise least-squares fitting or
ALIGN2D alignment
ASGL_.OUTPUT = (logical : 1) off whether to write output for ASGL

Description: This command compares the structures in the given alignment. It does not make an alignment, but it

calculates the RMs and DrMS deviations between atomic positions and distances, and class differences between
the mainchain and sidechain dihedral angles. In contrast to the SUPERPOSE command, COMPARE
works with a multiple alignment and it writes more information about the pairwise comparisons.

If no alignment is available, it assumes a 1:1 correspondence for the proteins specified by ATOM_FILES
or ALIGN_CODES. If ATOM_FILES is defined, it is used with the MODELLER file-naming mechanism (Sec-
tion 2.1.4) to find full names for the atom files. If it is not defined, ALIGN_CODES, which is usually set by the
previous READ_ALIGNMENT command, is used. ALIGN_CODES does not have to be set if ATOM_FILES
is set.

OUTPUT selects short (?SHORT’) or long (?LONG’) form of output to the log file. If it contains word ’RMS’
or *DRMS’ it also outputs the RMs or DRMS deviation matrix to file MATRIX_FILE. This file can be used
with the PHYLIP program or with the DENDROGRAM or PRINCIPAL_COMPONENTS commands
of MODELLER to calculate a clustering of the structures.

COMPARE_MODE selects the form of the positional variability calculated for each position along the sequence:

1, for true RMS deviation over all proteins that have a residue at the current position. This does not make
any sense for periodic quantities like dihedral angles.

2, for the average absolute distance over all pairs of residues that have a residue at the current position.

3, the same as 2 except that average distance, not its absolute value is used (convenient for comparison of
2 structures to get the + sign of the changes for dihedral angles and distances).

RMS_CUTOFFS specifies cutoff values for calculation of the position, distance, and dihedral angle RMs devia-
tions for pairwise overall comparisons. If difference between two equivalent points is larger than cutoff it is not
included in the RMS sum. The order of cutoffs in this vector is: atomic position, intra-molecular distance, «,
®, U, w, x1, X2, X3, X4, and x5 (there are 5 dihedrals in a disulfide bridge), where « is the virtual C, dihedral
angle between four consecutive C, atoms. These cutoffs do not affect positional variability calculations.

FIT_ATOMS string specifies all the atom types (including possibly a generic *ALL’) to be fitted in the least-
squares superposition. These atom types are used in the least-squares superposition, and in calculation of
the position and distance RMS deviations.

DISTANCE_ATOMS][1] specifies the atom type that is used for getting the average structure and RMS deviation
at each alignment position in the ASGL output file >posdif.asgl’. This AsSGL file contains the positional
variability of the selected atom type in the family of compared proteins. The ASGL output files can then be
used with ASGL scripts *posdif’ and ’dih’ to produce POSTSCRIPT plots of the corresponding variabilities
at each alignment position. ASGL_.OUTPUT has to be on to obtain the ASGL output files.

If FIT = on, a least-squares superposition is done before the comparisons; otherwise, the orientation of the
molecules in the input atom files is used.

Example: See MALIGN3D command.

2.4.20 ALIGN3D — align two structures

Options:

GAP_PENALTIES_3D = (real: 2) 0.0 1.75 gap creation and extension penalties for struc-
ture/structure superposition

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 67

FIT_ATOMS = (string: 1) ’CA’ one atom type used for superposition

FIT = (logical : 1) on whether to align

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

OUTPUT = (string : 1) YLONG’ ’SHORT® | ’LONG’ | ’VERY_LONG’

ALIGN3D_TRF = (logical : 1) off whether to transform the distances before dy-
namic programming

ALIGN3D_REPEAT = (logical : 1) off do several starts to maximize number of equiva-
lent positions

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

MATRIX_OFFSET = (real : 1) 0.00 substitution matrix offset for local alignment

OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons

LOCAL_ALIGNMENT = (logical : 1) off whether to do local as opposed to global align-
ment

Output: MODELLER_STATUS = (integer : 1)

Description: This command uses the current alignment as the starting point for an iterative least-squares su-

perposition of two 3D structures. This results in a new pairwise structural alignment. If no alignment is in
memory, the initial alignment is the 1:1 alignment. A good initial alignment may be obtained by sequence
alignment (ALIGN). For superpositions, only one atom per residue is used, as specified by FIT_ATOMS[1].
The alignment algorithm is as follows. First, structure 2 is least-squares fit on structure 1 using all the
equivalent residue positions in the initial alignment that have the specified atom type. Next, the residue-
residue distance matrix is obtained by calculating Euclidean distances between all pairs of selected atoms
from the two structures. The alignment of the two structures is then obtained by the standard dynamic
programming optimization based on the residue-residue distance matrix.
GAP_PENALTIES_3D[1] is a gap creation penalty (usually 0), and GAP_PENALTIES_3D[2] is a gap extension
penalty, say 1.75. This procedure identifies pairs of residues as equivalent when they have their selected atoms
at most 2 times GAP_PENALTIES_3D[2] angstroms apart in the current orientation (this is so when the gap
initiation penalty is 0). The reason is that an equivalence costs the distance between the two residues while
an alternative, the gap-residue and residue-gap matches, costs twice the gap extension penalty.

From the dynamic programming run, a new alignment is obtained. Thus, structure 2 can be fitted onto
structure 1 again, using this new alignment, and the whole cycle is repeated until there is no change in the
number of equivalent positions and until the difference in the rotation matrices for the last two superpositions
is very small. At the end, the framework, that is the alignment positions without gaps, is written to the log
file.

If FIT is off, no alignment is done.

If OUTPUT contains >SHORT’, only the best alignment and its summary are displayed. If OUTPUT contains
’LONG’, summaries are displayed for all initial alignments in each framework cycle. If OUTPUT contains
’VERY_LONG’, all alignments are displayed.

If ALIGN3D_TREF is on, the weights in the weight matrix are modified distances [?].

If ALIGN3D_REPEAT is on, three additional initial alignments are tried and the one resulting in the largest
number of equivalent positions is selected.

Example:

Example for: ALIGN3D, SUPERPOSE
This will align 3D structures of two proteins:
SET OUTPUT_CONTROL =1 1111

First example: read sequences from a sequence file:

68

CHAPTER 2. MODELLER COMMANDS

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’
ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

Second example: read sequences from PDB files to eliminate the

need for the toxin.ali sequence file:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’2ctx’, ;
ALIGN_CODES = ALIGN_CODES ’2ctx’

ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

And now superpose the two structures using current alignment to get
various RMS’s:

READ_MODEL FILE = ’1fas’

PICK_ATOMS ATOM_TYPES = °CA’

READ_MODEL2 FILE = ’2ctx’

SUPERPOSE FIT_ATOMS = °CA’

2.4.21 MALIGN3D — align two or more structures

Options:

ALIGN_CODES = (string: 0) ’all’ codes of proteins in the alignment

ATOM_FILES = (string: 0) 2 complete or partial atom filenames

ATOM_FILES_DIRECTORY = (string:1) °’./’ input atom files directory list (e.g.,
’dirl:dir2:dir3:./:/7)

GAP_PENALTIES_3D = (real : 2) 0.0 1.75 gap creation and extension penalties for struc-
ture/structure superposition

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

MATRIX_OFFSET = (real: 1) 0.00 substitution matrix offset for local alignment

OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons

LOCAL_ALIGNMENT = (logical : 1) off whether to do local as opposed to global align-
ment

FIT_ATOMS = (string: 1) ’CA? one atom type for superposition

FIT = (logical : 1) on whether to align

OUTPUT = (string : 1) YLONG’ » SHORT? | LONG’ | »VERY_LONG’ |
’NO_ALIGNMENT’

WRITE_FIT = (logical : 1) off whether to write out fitted coordinates to .fit files

CURRENT_DIRECTORY = (logical:1) on whether to write output .fit files to current direc-
tory

WRITE_.WHOLE_PDB = (logical : 1) on whether to write out all lines in the input PDB
file

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

Output: MODELLER_STATUS = (integer : 1)

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 69

Description: This command uses the current alignment as the starting point for an iterative least-squares super-
position of two or more 3D structures. This results in a new multiple structural alignment. If no alignment is
in memory, the initial alignment is the 1:1 alignment. A good initial alignment may be obtained by sequence
alignment (MALIGN). For superpositions, only one atom per residue is used, as specified by FIT_ATOMS.
The resulting alignment can be written to a file with the WRITE_ALIGNMENT command. The multiply
superposed coordinates remain in memory and can be used with such commands as TRANSFER_XYZ
if ATOM_FILES is not changed in the meantime. It is best to use the structure that overlaps most with all
the other structures as the first protein in the alignment. This may prevent an error exit due to too few
equivalent positions during framework construction.

The alignment algorithm is as follows. There are several cycles, each of which consists of an update of
a framework and a calculation of a new alignment; the new alignment is based on the superposition of
the structures onto the latest framework. The framework in each cycle is obtained as follows. The initial
framework consists of the atoms in structure 1 that correspond to FIT_ATOMS. If there is no specified atom
types in any of the residues at a given position, the coordinates for this framework position are approximated
by the neighboring coordinates. Next, all other structures are fit to this framework. The final framework for
the current cycle is then obtained as an average of all the structures, in their fitted orientations, but only
for residue positions that are common to all of them, given the current alignment. Another result is that
all the structures are now superposed on this framework. Note that the alignment has not been changed
yet. Next, the multiple alignment itself is re-derived in N — 1 dynamic programming runs, where N is
the number of structures. This is done as follows. First, structure 2 is aligned with structure 1, using the
inter-molecular atom—-atom distance matrix, for all atoms of the selected type, as the weight matrix for the
dynamic programming run. Next, structure 3 is aligned with an average of structures 1 and 2 using the same
dynamic programming technique. Structure 4 is then aligned with an average of structures 1-3, and so on.
Averages of structures i—j are calculated for all alignment positions where there is at least one residue in
any of the structures i—j (this is different from a framework which requires that residues from all structures
be present). Note that in this step, residues out of the current framework may get aligned and the current
framework residues may get unaligned. Thus, after the series of N — 1 dynamic programming runs, a new
multiple alignment is obtained. This is then used in the next cycle to obtain the next framework and the
next alignment. The cycles are repeated until there is no change in the number of equivalent positions. This
procedure is best viewed as a way to determine the framework regions, not the whole alignment. The results
from this command are expected to be similar to the output of program MNYFIT [?].

GAP_PENALTIES-3D[1] is a gap creation penalty (usually 0), and GAP_PENALTIES_3D[2] is a gap extension
penalty, say 1.75. This procedure identifies pairs of positions as equivalent when they have their selected
atoms at most 2 times GAP_PENALTIES_3D[2] angstroms apart in the current superposition (this is so when
the gap initiation penalty is 0), as described for the ALIGN3D command.

Argument OUTPUT can contain the following values:

e ’SHORT’, only the final framework is written to the log file.

e ’LONG’, the framework after the alignment stage in each cycle is written to the log file.

e ’VERY_LONG’, the framework from the framework stage in each cycle is also written to the log.
If WRITE_FIT is on, the fitted atom files are written out in their final fitted orientations. Their filenames are
the original filenames with an extension .fit.

If CURRENT_DIRECTORY is on, the output .fit files will go to the current directory. Otherwise, the output
will be in the directory with the original files.

If WRITE_.WHOLE_PDB is on, the whole PDB files are written out; otherwise only the parts corresponding
to the aligned sequences are output.

If FIT is of £, the initial alignment is not changed. This is useful when all the structures have to be superim-
posed with the initial alignment (FIT = off and WRITE_FIT = on).

Example:

Example for: MALIGN3D, COMPARE

70 CHAPTER 2. MODELLER COMMANDS

This will read all sequences from a sequence file, multiply align
their 3D structures, and then also compare them using this alignment.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

MALIGN GAP_PENALTIES_1D= -600 -400

MALIGN3D GAP_PENALTIES_3D= 0 2.0, WRITE_FIT = on, WRITE_WHOLE_PDB = off
WRITE_ALIGNMENT FILE = ’toxin-str.pap’, ALIGNMENT_FORMAT = ’PAP’

Make two comparisons: no cutoffs, and 3.5A/60 degree cutoffs for RMS, DRMS,
and dihedral angle comparisons:

COMPARE RMS_CUTOFFS = 999 999 999 999 999 999 999 999 999 999 999

COMPARE RMS_CUTOFFS = 3.5 3.5 60 60 60 60 60 60 60 60 60

2.4.22 EXPAND ALIGNMENT — put all models into alignment

Options:
ROOT_NAME = (string:1) ’undf’ root of a filename for filename construction
FILE_ID = (string: 1) ’default’ file id for filename construction
EXPAND_CONTROL = (integer : 5) 9999 9999 1 10 0 for controlling EXPAND_ALIGNMENT
FILELEXT = (string: 1) 2 file extension for filename construction

Output: alignment

Description: ID1, ID2, ROOT_NAME, FILE_EXT, and FILE_ID are used to construct atom filenames for all the
models (Section 2.1.4). Next, all the models are added to the alignment, using the last sequence in the
input alignment as the guide. This allows easy multiple superposition of all the templates and models after
comparative modeling.

Example:
Example for: EXPAND_ALIGNMENT
This will add models to the alignment.
READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’
EXPAND_ALIGNMENT EXPAND_CONTROL = 9999 9999 1 3 0, ;

ROOT_NAME = ’2abx’, FILE_ID = ’.B’, FILE_EXT = *’
WRITE_ALIGNMENT FILE = ’toxin-expand.ali’

2.4.23 SEQUENCE_SEARCH — search for similar sequences

Options:
RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file
FILE = (string: 1) ’default’ file with the target sequence
ALIGN_CODES = (string: 0) ’all’ the code of the target sequence
DIRECTORY = (string:1)) directory list (e.g., ’dirl:dir2:dir3:./:/?)
GAP_PENALTIES_1D = (real : 2) -900 -50 gap creation and extension penalties for se-

quence/sequence alignment

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 71

OFF_DIAGONAL = (integer : 1) 100 to speed up the alignment

MATRIX_OFFSET = (real: 1) 0.00 substitution matrix offset for local alignment
OVERHANG = (integer : 1) 0 un-penalized overhangs in protein comparisons
LOCAL_ALIGNMENT = (logical : 1) of f whether to do local as opposed to global align-

SEARCH_CHAINS_LIST = (string : 1)
SEARCH_CHAINS_FILE = (string : 1)
SEARCH_GROUP_LIST = (string: 1)

ment

’$(LIB)/CHAINS_3.0_40 il .wikh’ sequences
’$(LIB) /CHAINS_all.sefjle with a list of sequence codes
’$(LIB) /CHAINS_3.0_40 K witg’ 40% groups of sequences

ALIGNMENT_FORMAT = (string : 0) ’PIR’ sequence file formats; has to be ’PIR’
ALIGNMENT_FEATURES = (string : 0) > INDICES what alignment features to write out: >ACCURACY’
CONSERVATION’ | ’HELIX’ | °’BETA’ | ’ACCESSIBILITY’ |

’STRAIGHTNESS® | ’>CONSERVATION’ | ’INDICES’
| ’ALL’ | ’GAPS’

REMOVE_GAPS = (logical : 1) on whether to remove all-gap positions in input align-
ment

SEARCH_TOP_LIST = (integer : 1) 20 the length of the output hits list

OUTPUT = (string : 1) JLONG? ’SHORT® | ’LONG’

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

SEARCH_SORT = (string: 1) ’LONGER’ which sequence to use for normalization when
sorting the hit list: >SHORTER’ | ’LONGER’

SEARCH_RANDOMIZATIONS =0 number of randomizations for calculating the sig-

(integer : 1) nificance of a sequence/sequence similarity

RAND_SEED = (integer : 1) -8123 random seed from -50000 to -2

FAST _SEARCH = (logical : 1) off whether to use fast sequence search or not

FAST_SEARCH_CUTOFF = (real: 1) 1.0 if FAST_.SEARCH is ON only sequences with
database scan significance higher than this value
are considered for randomization significance

DATA_FILE = (logical : 1) off whether results go to a separate file or not

SIGNIF_CUTOFF = (real: 2) 4.0 5.0 cutoff for adding sequences to alignment, max dif-

ference from the best

Output: MODELLER_STATUS = (integer : 1)

Description: This command searches a sequence database for proteins that are similar to a given target sequence.
Target sequence is read from file FILE.
ALIGN_CODES specifies the code of the target sequence in the FILE file. If only one sequence is in the file,
you can use ALIGN_CODES = ’all’ to read it without bothering about the actual sequence code.
SEARCH_CHAINS_LIST specifies a file that contains protein codes for the proteins to be compared with the
target sequence.
The database sequences specified in SEARCH_CHAINS_LIST file must occur in the SEARCH_CHAINS_FILE file.
The command uses the dynamic programming method for the best sequence alignment, given the gap creation

and extension penalties specified by GAP_PENALTIES_1D and residue type scores read from file RR_FILE.
GAP_PENALTIES_1D[1] is a gap creation penalty and GAP_PENALTIES_1D[2] is a gap extension penalty.

The SEARCH_TOP_LIST top hits are written to the log file at the end. The hits are sorted according to the
fractional sequence identity score obtained by dividing the number of identical residue pairs by the length of
the longer sequence (SEARCH_SORT = ’LONGER’) or the shorter sequence (SEARCH_SORT = ’SHORTER’).

The final list of hits contains three different significance values:

1. SIGNI. Z-score from sequence randomizations. This is the most accurate significance score, but the
slowest one to calculate. For each pairwise comparison, the two sequences are shuffled a specified number
of times (SEARCH_RANDOMIZATIONS) to obtain the mean and standard deviation of “random” scores
from which the Z-score for an alignment score of a given pair of sequences is calculated.

72 CHAPTER 2. MODELLER COMMANDS

2. SIGNI2. Z-score for sequence identity from the database scan. After comparison of the target sequence
with all sequences in the database is done, the comparisons are sorted by the length of the database
sequence. The pairwise sequence identities of the 20 sequences closest in length to the target sequence are
used to calculate the average and standard deviation of the percentage sequence identities for subsequent
calculation of the Z-score for the percentage sequence identity of a given pairwise alignment.

3. SIGNI3. Z-score for alignment score from the database scan. The procedure is the same as for SIGNI2,
except that the alignment scores are used instead of the pairwise sequence identities.

The calculation of the Z-scores assumes that the random scores are distributed according to the Gaussian
distribution, instead of the extreme value distribution [?], which is more correct.

SEARCH_RANDOMIZATIONS specifies how many alignments of the shuffled sequences are done to calculate
the significance score for the overall sequence similarity. If 0, the significance is not calculated. If more than
5 randomizations are done, the significance score, not sequence identity, is used for sorting the hit list.

When FAST _SEARCH is on only those sequences that have a database-scan alignment score significance
(SIGNI3 in output) above FAST_SEARCH_CUTOFF are used for the “full” randomization-based significance
calculation. Since the mean and the standard deviation of the distribution obtained by randomizing the two
compared sequences are much more appropriate than the corresponding quantities for the target/database
comparisons, FAST_SEARCH should be on only when you are in a hurry and the database is large.

If DATA_FILE is on the final results (list of PDB codes with significances, etc.) are also written to a separate
file >segsearch.dat’.

If OUTPUT is ’LONG’, the best alignment for each sequence in SEARCH_CHAINS_FILE and its various scores
are also written to the log file. If OUTPUT is ’VERY_LONG’, individual scores obtained for randomized
sequences are also written to the log file (this is almost never needed).

If the selected significance score is larger than SIGNIF_CUTOFF[1] and not more than SIGNIF_.CUTOFF[2]
units worse than the best hit, all the members of the same group, as defined in SEARCH_GROUP_LIST, are
added to the alignment array. Subsequent MALIGN, DENDROGRAM and WRITE_ALIGNMENT
can then be used to write out all related PDB chains aligned to the target sequence.

Example:
Example for: SEQUENCE_SEARCH

This will search the MODELLER database of representative protein chains
for chains similar to the specified sequence.

SET OUTPUT_CONTROL =1 111 2

SET SEARCH_RANDOMIZATIONS = 20 # should use 100 in real life;

SET GAP_PENALTIES_1D = -800 -400

SET SEARCH_CHAINS_LIST = ’very-short-for-test.cod’

SEQUENCE_SEARCH FILE = ’toxin.ali’, ALIGN_CODES = ’1nbt’

MALIGN

WRITE_ALIGNMENT FILE = ’toxin-search.pap’, ALIGNMENT_FORMAT = ’PAP’

SET SEARCH_CHAINS_LIST = ’very-short-for-test.cod’
SEQUENCE_SEARCH FILE = ’toxin.ali’, ALIGN_CODES = ’1nbt’

2.4.24 DELETE_ALIGNMENT — delete alignment

Description: This command deletes an existing alignment from the MODELLER memory. This is useful when a
default 1:1 correspondence, such as that between an X-ray structure and its MODELLER model, is needed.
This default alignment is constructed for the commands that need an alignment only if there is no alignment
already in memory.

Example: See PATCH command.

2.4. COMPARISON AND SEARCHING OF SEQUENCES AND STRUCTURES 73

2.4.25 SEGMENT MATCHING — align segments

Options:
RR_FILE = (string: 1) ’$(LIB)/asl.sim.mat’ input residue-residue scoring file
ALIGN_BLOCK = (integer : 1) 1 the last sequence in the first block of sequences
SEGMENT_REPORT = (integer : 1) 1D6 for SEGMENT_MATCHING
SEGMENT _CUTOFF = (real: 1) 999999 cutoff for writing out an alignment in SEG-
MENT_MATCHING
SEGMENT _SHIFTS = (integer : 0) segment shifts +- in SEGMENT_MATCHING

SEGMENT_GROWTH_N = (integer : 0) reducing/growing segment N-termini in SEG-
MENT_MATCHING

SEGMENT_GROWTH_C = (integer : 0) reducing/growing segment C-termini in SEG-
MENT_MATCHING

MIN_LOOP_LENGTH = (integer : 0) inter-segment minimal lengths in SEG-
MENT_MATCHING

FILE = (string: 1) ’default’ partial or complete filename

OUTPUT_DIRECTORY = (string:1) 2 output directory

ROOT_NAME = (string: 1) ’undf’ root of a filename for filename construction

FILE_ID = (string: 1) ’default’ file id for filename construction

FILELEXT = (string: 1) 2 file extension for filename construction

Requirements: alignment

Description: This command enumerates alignments between two blocks of sequences. More precisely, it enu-
merates the alignments between the segments in the first block and the sequences in the second block. The
segments can be moved to the left and right as well as lengthened and shortened, relative to the initial align-
ment. The regions not in segments or not aligned with segments are left un-aligned, possibly to be modeled
as insertions. Typically, the first block of sequences corresponds to structures, the segments to secondary
structure elements in the first block, and the second block to the sequences one of which is to be modeled later
on. The command is useful for generating many alignments which can then be used by another MODELLER
script to generate and evaluate the corresponding 3D models.

All the sequences and segments are defined in the alignment array. The first block of sequences, the ones
with segments, are the first ALIGN_BLOCK sequences. The regions corresponding to the segments are defined
by the last entry in the alignment as contiguous blocks of non-gap residues. Any standard single character
residue code may be used. The segments must be separated by gap residues, ‘-’. The remaining sequences
from ALIGN_BLOCK + 1 to NSEQ — 1 are the second block of sequences. The alignment of the sequences
within the two blocks does not change. A sample alignment file is

The enumeration of alignments explores all possible combinations of alignments between each segment and
the 2nd block of sequences: The starting position of each segment i is varied relative to the input align-
ment in the interval from SEGMENT_SHIFT[2{ — 1] to SEGMENT_SHIFT[2{]. There has to be at least
MIN_LOOP_LENGTH[:{] and MIN_.LOOP_LENGTH[i + 1] residues that are not in any segment before and after
the i-th segment, respectively. The location of the N-terminus of segment ¢ is varied relative to the location
in the input alignment in the interval from SEGMENT_GROWTH_N[2; — 1] to SEGMENT_GROWTH_N[24].
Similarly, the location of the C-terminus of segment i is varied relative to the location in the input align-
ment in the interval from SEGMENT_GROWTH_C[2i — 1] to SEGMENT_GROWTH_C[2i{]. The shortening and
lengthening of the segments may be useful in determining the best anchor regions for modeling of a loop.

Each alignment is scored according to the similarity scoring matrix specified by filename RR_FILE. This matrix
may contain residue—gap scores, the gap being residue type 21; otherwise the value is set to the smallest value
in the matrix. The score for an alignment is obtained by summing scores only over all alignment positions
corresponding to the segments (no gap penalty is added for loops). When there is more than one sequence
in any of the two blocks, the position score is an average of all pairwise comparisons between the two blocks
of sequences. In the case where the number of positions in the alignment changes (i.e., the segments grow

74

CHAPTER 2. MODELLER COMMANDS

or shorten), the scores are not comparable to each other. It is feasible to enumerate on the order of 101°
different alignments in less than one hour of CPU time.

In general, two runs are required. In the first run, the alignments are scored and a histogram of the scores is
written to file FILE. Then this file must be inspected to determine the cutoff SEGMENT_CUTOFF. In the second
run, all the alignments with a score higher than SEGMENT_CUTOFF are written to files in the PIR format,
using the standard filenaming convention: OUTPUT_DIRECTORY/ROOT_NAMEFILE_IDnnnn0000FILE_EXT,
where nnnn is the alignment file counter. In addition, the alignments are also written out in the PAP format
for easier inspection by eye. Thus, SEGMENT_CUTOFF has to be set to a very large value in the first run,
to avoid writting alignment files. During a run, a message is written to the log every SEGMENT_REPORT
aligments; this is useful for knowing what is going on during very long runs.

2.5. CALCULATION OF SPATIAL RESTRAINTS 75

2.5 Calculation of spatial restraints

This Chapter explains how the restraints are represented in a restraint file and also describes commands for reading,
writing, generating, and manipulating restraints. See Section 5.3 for equations defining the restraints and their
derivatives with respect to atomic positions. See Section 2.6 for commands for calculating the objective function
and Section 5.2 for optimization methods. See the original papers for the most detailed definition and description
of the restraints [?,7].

2.5.1 Specification of restraints
Static and dynamic restraints

Static restraints are read from the restraints file or are generated by the MAKE_RESTRAINTS command. All other
restraints are dynamic restraints and are created on the fly; they currently include restraints on non-bonded atom
pairs.

Formats of the restraints file

Restraints may be read from a restraints file in two formats, MODELLER or USER. The files in the MODELLER
and USER formats have to begin with the lines ’MODELLER12 VERSION: MODELLER FORMAT’ and ’MODELLER12
VERSION: USER FORMAT’, respectively. In both formats, there is one entry per line. The format is free, except that
the first character has to be at the beginning of the line. There are three different entry types in the MODELLER
format:

R Form Modality Feature Group Numb_atoms Numb_parameters 0 Atom_indices Parameters
E Atom_index_1 Atom_index_2

P Pseudo_atom_index Pseudo_atom_type Numb_real_atoms Real_atom_indices

For example,

R 3 1 1 1 2 2 0 437 28 1.5000 0.1000
E 120 540
p 1 3 3 120 121 122

When the line starts with R’ it contains a restraint, ’E’ indicates a pair of atoms to be excluded from the
calculation of the dynamic non-bonded pairs list, and ’P’ indicates a pseudo atom definition (Section 2.5.2).

The USER format recognizes only the R entries. The fields of a line in the USER format are:
Id Form Modality Feature Group Numb_atoms Numb_parameters 0 Parameters Atom_ids

For example,
R 3 111 2 2 0 1.5000 0.1000 NH#:1:A CA:2:A

The seven integer indices used to specify various restraint properties are listed in Tables 2.2-2.4. They are: Form
specifies the mathematical form of the restraint. Modality should be viewed as the argument to Form. It specifies
the number of single Gaussians in a poly-Gaussian pdf, periodicity n of the cosine in the cosine potential, and
the number of spline points for cubic splines. Only certain combinations of Form and Modality are possible. Any
Feature can be used with any Form/Modality pair. Group or “physical feature type” groups restraints for reporting
purposes in ENERGY, etc. The number of atoms and parameters for the restraint are specified by Numb_atoms
and Numb_prms, respectively. The seventh integer index can be ignored. Atom indices and Parameters have to
match the hard-wired conventions. The format of the atom id is ATOM_NAME:RESIDUE_#[:CHAIN _ID], where
ATOM_NAME is the four character IUPAC atom name as found in a PDB file, RESIDUE_# is a five character
residue number as it occurs in the PDB file of a model, and the optional CHAIN_ID is the single character chain
id as it occurs in the PDB file. For example, the carbonyl oxygen (O) in residue ’>10A° in chain ’A’ is specified by
’0:10A:A”; if the chain has no chain id, the name would be only ’O:10A’.

76 CHAPTER 2. MODELLER COMMANDS

2.5.2 Specification of pseudo atoms

There are virtual and pseudo atoms. A virtual atom is an atom that occurs in the actual molecule, but whose
position is not represented explicitly in the MODEL and topology file. A pseudo atom is a position that does not
correspond to an actual atom in a molecule, but is some sort of an average of positions of real atoms. MODELLER
follows GROMOS definitions for the seven types of pseudo and virtual atoms: gravity center, V41, V31, P2, V42, P3,
and P6. These names are constructed using the following rules: ’V’ and P’ indicate virtual and pseudo atoms,
respectively. The second digit indicates the number of substituents on the central atom (for *V’) and the number
of protons whose positions are averaged (for ’P’). The last digit indicates the number of protons on the central
atom (for ’V?).

GROMOS ROUTINE #DEF DESCRIPTION
TYPE NAME ATM

1 PSD N gravity center

2 VCH1 4 virtual aliphatic proton on a tetrahedral carbon (->CH),
defined by the central C and the three other substituents;

3 VCH1A 3 virtual aromatic proton on a trigonal carbon (=CH),
defined by the central C and the two C atoms bonded
to the central C;

4 PCH2 3 pseudo aliphatic proton on a tetrahedral carbon (>CH2)
not assigned stereospecifically; its position is
between the two real protons; defined by the central
C and the other two substituents;

5 VCH2 3 virtual aliphatic proton on a tetrahedral carbon (>CH2)
assigned stereospecifically; defined by the central
tetraedral atom and the other two substituents on it;

6 PCH31 2 pseudo aliphatic proton on a tetrahedral carbon (-CH3),
defined by the central C and the heavy atom X in X-CH3;
its position is the average of the three real protons;

7 PCH32 3 pseudo aliphatic proton between two unassigned -CH3
groups; defined by X in CH3 - X - CH3 and the two
C atoms from the two CH3 groups (Val, Leu!);
its position is the average of the six real protons;

0 - - delta and epsilon protons on rapidly flipping aromatic
rings should refer directly to real gamma and delta C
atoms, respectively.

In a restraints file, pseudo atoms are indexed from NATM+1 to NATM+NPSEUDO where NPSEUDO is the
number of pseudo atoms. The restraints (the R entries) are exactly the same as for the real atoms, except that
the pseduo atom integer indices are used (indices are larger than NATM). The pseudo atoms are defined in the P
entries:

P i j k al a2 a3

where i is atom index of pseudo atom i, j is the type of the pseudo atom i (see the table above), k is the number
of real atoms defining the current pseudo atom (3 in this case), and al a2 a3 are the integer indices of real atoms
defining the current pseudo atom.

For example, if you want to define a pseudo atom which is a gravity center of atoms 4, 7, and 10, and there are
101 real atoms in the protein:

2.5. CALCULATION OF SPATIAL RESTRAINTS

P 1021347 10

7

CHAPTER 2. MODELLER COMMANDS

78

Form Parameters Violation Reference
1 left Gaussian (harmonic lower bound) f,o (f—1)/o Eq. 5.54
2 right Gaussian (harmonic upper bound) f,o (f— /o Eq. 5.55
3 single Gaussian (harmonic potential) f.o (f— /o Eq. 5.39
4 multiple Gaussian (Wi)ny (Fi)ny (0)n max,, (f — fi)/o Eq. 5.50
5 Lennard-Jones potential A,B 0.0 Eq. 5.62
6 Coulomb point-to-point potential Q,q 0.0 Eq. 5.59
7 Cosine potential a,b c Eq. 5.56
8 undefined
N - - N

9 multiple binormal (wi)n, CM:, .\l.m@.vzu (o1i,02i)n, (p)n maxy, |MC|W%IV _HA?QIHM: v — 2p; ?qluw: \mqlmwﬁ + A\MQINME v H_ Eq. 5.50
10 cubic spline pi,fori=1,6+n (f = fmin)/o Eq. 5.69

Table 2.2: List of mathematical forms of restraints. The parameters and their order in the restraint file are also given (Params above). (...), indicates that
(...) is repeated n times, where n is specified by the second integer parameter of the restraint, modality (see above). Modality also defines periodicity of
the cosine restraint, corresponding to parameter n in Eq 5.56, and the number of interpolating points for the spline restraint (Eq. 5.69). Feature f can
generally be either a measure of solvent exposure (undocumented), a distance, an angle, or a dihedral angle, with the exception of restraint form 9 that
only works with a pair of dihedral angles. The angle unit in the restraints file is radians. The internal angle unit of MODELLER is radians, too. Column
’Violation’ defines the “relative heavy violations” used in PICK_HOT_ATOMS. For cubic splines, f,,;» is the feature value that results in the smallest
value of the restraint and o is the standard deviation of the Gaussian function fitted locally around f;,;,,. The parameters p; for a spline restraint are: the
scaling factor (p1), the smallest value at which interpolation is done, 1 (p2), the largest interpolating value z, (p3), the interval between interpolating
points, Az (p4), the first derivative at x1 (ps), the first derivative at z,, (pg). The following n values are the values of the restraint at the interpolating x;
points. The MODELLER-4 format has additional n values, which are the second derivatives of the restraint at the interpolating z; points.

2.5. CALCULATION OF SPATIAL RESTRAINTS 79

Index Feature
1 distance
2 angle
3 dihedral angle
4 a pair of dihedral angles (points 1-4 and 5-8)
5 distance between gravity centers of two groups of atoms
6 minimal distance between several pairs of atoms
7 atomic area exposed to solvent in A’
8 number of neighbouring atoms

Table 2.3: List of feature types that can be restrained.

—
=}
o,
@
"

Group
Bond length potential
Bond angle potential
Stereochemical cosine dihedral potential
Stereochemical improper dihedral potential
soft-sphere overlap restraints
Lennard-Jones 6-12 potential
Coulomb point-point electrostatic potential
H-bonding potential
9 Distance restraints 1 (C,—C,)
10 Distance restraints 2 (N-O)
11 Mainchain ® dihedral restraints
12 Mainchain ¥ dihedral restraints
13 Mainchain w dihedral restraints
14 Sidechain x; dihedral restraints
15 Sidechain yx, dihedral restraints
16 Sidechain y3 dihedral restraints
17 Sidechain x4 dihedral restraints
18 Disulfide distance restraints
19 Disulfide angle restraints
20 Disulfide dihedral angle restraints
21 X lower bound distance restraints
22 X upper bound distance restraints
23 Distance restraints 3 (SDCH-MNCH)
24 Sidechain x5 dihedral restraints
25 (®,P) binomial dihedral restraints
26 Distance restraints 4 (SDCH-SDCH)
27 Distance restraints 5 (X-Y)
28 NMR distance restraints 6 (X-Y)
29 NMR distance restraints 7 (X-Y)
30 Minimal distance restraints
31 Non-bonded spline restraints
32 Atomic accessibility restraints
33 Atom density restraints

O~ Ut Wi

Table 2.4: List of “physical” restraint types.

80

2.5.3 MAKE_RESTRAINTS — make restraints

Options:
RESTRAINT_TYPE = (string : 0)

RADII_FACTOR = (real : 1)
TOPOLOGY_MODEL = (integer : 1)
DIH_LIB_ONLY = (logical : 1)

MNCH_LIB = (integer : 1)
INTERSEGMENT = (logical: 1)

ADD_RESTRAINTS = (logical : 1)

RESIDUE_GROUPING = (integer : 1)
MAXIMAL_DISTANCE = (real: 1)
RESIDUE_SPAN_RANGE = (integer : 2)

RESIDUE_SPAN_SIGN = (logical : 1)

RESTRAINT_SEL_ATOMS = (integer : 1)

NONBONDED_SEL_ATOMS = (integer : 1)

EXCL_LOCAL = (logical : 4)

ACCESSIBILITY_TYPE = (integer : 1)
DISTANCE_RSR_MODEL = (integer : 1)
RESTRAINT_STDEV = (real : 2)

RESTRAINT_PARAMETERS = (real : 0)

MDT_LIB_FILE = TYPEVALUES
BIN_LIB_FILE = TYPEVALUES
ATOM_FILES_DIRECTORY = (string : 1)

BASIS_PDF_WEIGHT = (string : 1)

BASIS_RELATIVE_WEIGHT = (real: 1)

’STEREQ’

0.82

off

on

off

1
999.
0 99999

on

on on on on

0.0 1.0

31334200.0

0.087
DEFAULT

DEFAULT
2 . /)

’LOCAL’

0.05

CHAPTER 2. MODELLER COMMANDS

restraint type to be calculated: ’STEREQ’ |
’BOND’ | ’ANGLE’ | ’IMPROPER’ | ’DIHEDRAL’
| "MRFP_STEREQ’ | ’MRFP_BOND’ | ’MRFP_ANGLE’

| °MRFP_DIHEDRAL’ | °SPHERE’ | °’>SPHERE14’
| °LJ’ | °LJ14’ | °COULOMB’ | ’COULOMB14° |
ALPHA’ | °STRAND’ | °’SHEET’ | °DISTANCE’

| ’USER_DISTANCE’ ’NONB_PAIR_SPLINE’ |
’PHI-PSI_BINORMAL’ | ’PHI-PSI_CLASS’
| ’PHI_DIHEDRAL’ | ’PSI_DIHEDRAL’ |
’OMEGA_DIHEDRAL’ | ’CHI1 DIHEDRAL’ |
’CHI2_DIHEDRAL’ | >CHI3_DIHEDRAL’ |
’CHI4 DIHEDRAL’

factor for van der Waals radii

selects topology library: 1-9

whether to use only library, not homologs for di-
hedral angle rsrs
which MNCH lib to use in MAKE_RESTRAINTS

whether to restrain inter-segment non-bonded
pairs

whether to add new restraints to existing re-
straints

maximal distance for distance restraints

range of residues spanning the allowed

distances; for MAKE RESTRAINTS,
PICK_ RESTRAINTS, non-bonded dynamic
pairs

whether to do N*(N-1)/2 loop for atom pairs
in MAKE RESTRAINTS RESTRAINT_TYPE
= ’distance’

arestraint other than non-bonded pair has to have
at least as many selected atoms

a non-bonded pair has to have at least as many
selected atoms

whether to exclude bonds, angles, dihedrals, ex-
plicit excl pairs from the homology-derived dis-
tance rsrs

type of solvent accessibility: 1-10

the model for calculating distance restraints: 1-7

transforming factors for standard deviations
(y=a+bx) in models 1-6 or standard deviation
for model 7 (a)

restraint parameters for >USER_DISTANCE’

DESCRIPTION

DESCRIPTION

input atom files directory list (e.g.,
’dirl:dir2:dir3:./:/°)

a method for calculation of basis pdf weights:

’LOCAL’ | ’GLOBAL’
the cutoff weight of basis pdf’s for their removal

2.5. CALCULATION OF SPATIAL RESTRAINTS 81

RESIDUE_IDS = (string : 0) 2 residue id (number:chnid)
SPLINE_ON_SITE = (logical : 1) off whether to convert restraints to splines

Requirements: topology & parameters [& alignment] [& picked atoms sets 2 and 3]

Description: This command calculates and selects new restraints of a specified type. See the original papers for
the most detailed definition and description of the restraints [7,7]. The calculation of restraints of all types
is now (partly) limited to the selected atoms only (either set 1, or 2 and 3; see below).

If ADD_RESTRAINTS is off, all old restraints are deleted, otherwise new restraints are added to the old ones.

RESTRAINT_TYPE selects the types of the generated restraints. Only one restraint type can be selected at a
time, except for the stereochemical restraints (BOND, ANGLE, DTHEDRAL, IMPROPER) that can all be calculated
at the same time. It is useful to distinguish between the stereochemical restraints and homology-derived
restraints. The stereochemical restraints are obtained from libraries that depend on atom and/or residue types
only (e.g., CHARMM 22 force field [?] or statistical potentials), and do not require an alignment with template
structures. In contrast, the homology-derived restraints are calculated from related protein structures, which
correspond to all but the last sequence in the alignment (the target). These templates are read from coordinate
files, which are the only data files required. All restraints are added to the existing restraints, even if they
duplicate them (but see the comment for the ’OMEGA’ restraints below).

e Stereochemical restraints:

e ’BOND’. This calculates covalent bond restraints (harmonic terms). It relies on the list of the atom-
atom bonds for MODEL, prepared previously by the GENERATE_TOPOLOGY command. The
mean values and force constants are obtained from the parameter library in memory. Only those bonds
are restrained that have all or at least RESTRAINT_SEL_ATOMS in the selected atom set 1.

e ’ANGLE’. This calculates covalent angle restraints (harmonic terms). It relies on the list of the atom-—
atom—atom bonds for MODEL, prepared previously by the GENERATE_TOPOLOGY command.
The mean values and force constants are obtained from the parameter library in memory. Only those
angles are restrained that have all or at least RESTRAINT_SEL_ATOMS in the selected atom set 1.

e 'DIHEDRAL’. This calculates covalent dihedral angle restraints (cosine terms). It relies on the list
of the atom-atom-atom-atom dihedral angles for MODEL, prepared previously by the GENER-
ATE_TOPOLOGY command. The minima, phases, and force constants are obtained from the pa-
rameter library in memory. Only those dihedral angles are restrained that have all or at least RE-
STRAINT_SEL_ATOMS in the selected atom set 1.

e IMPROPER’. This calculates improper dihedral angle restraints (harmonic terms). It relies on the list
of the improper dihedral angles for MODEL, prepared previously by the GENERATE _TOPOLOGY
command. The mean values and force constants are obtained from the parameter library in memory.
Only those impropers are restrained that have all or at least RESTRAINT_SEL_ATOMS in the selected
atom set 1.

e ’STEREQ’. This implies all ’BOND’, >ANGLE’, >DIHEDRAL’, and ’> IMPROPER’ restraints.

e ’MRFP_BOND’. Similar to ’BOND’ except that spline restraints from the corresponding MRFP entries in the
parameter library are used instead of the harmonic terms. Only those bonds are restrained that have
all or at least RESTRAINT _SEL_ATOMS in the selected atom set 1.

e ’MRFP_ANGLE’. Similar to >ANGLE’ except that spline restraints from the corresponding MRFP entries in
the parameter library are used instead of the harmonic terms. Only those angles are restrained that
have all or at least RESTRAINT _SEL_ATOMS in the selected atom set 1.

e ’MRFP_DIHEDRAL’. Similar to ’DIHEDRAL’ except that spline restraints from the corresponding MRFP
entries in the parameter library are used instead of the cosine terms. Only those dihedral angles are
restrained that have all or at least RESTRAINT_SEL_ATOMS in the selected atom set 1.

e ’MRFP_STEREQ’. This implies all >MRFP_BOND’, >MRFP_ANGLE’, and >MRFP_DIHEDRAL’ restraints.

82

CHAPTER 2. MODELLER COMMANDS

’SPHERE14’. This constructs soft-sphere overlap restraints (lower harmonic bounds) for atom pairs
separated by exactly three bonds (1-4 pairs). It relies on atom radii from the >$RADITI14 LIB’ library.
Only those non-bonded pairs are restrained that have all or at least NONBONDED SEL_ATOMS in
the selected atom set 1. They must also satisfy the RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN
criterion.

’LJ14’. This constructs 1-4 Lennard-Jones restraints using the modified 1-4 Lennard-Jones parameters
from the CHARMM parameter library. There is no way to calculate ’LJ14° as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least NONBONDED_SEL_ATOMS in the selected
atom set 1. They must also satisfy the RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN criterion.

’COULOMB14’. This constructs 1-4 Coulomb restraints by relying on the atomic charges from the
CHARMM topology library. There is no way to calculate ’>COULOMB14’ as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least NONBONDED_SEL_ATOMS in the se-
lected atom set 1. They must also satisfy the RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN criterion.

»SPHERE’ . This constructs soft-sphere overlap restraints (lower harmonic bounds) for all atom pairs that
are not in bonds, angles, dihedral angles, improper dihedral angles, nor are explicitly excluded by the
’E’ entries read from a restraint file or added by the ADD_RESTRAINT command. Only those non-
bonded pairs are restrained that have all or at least NONBONDED_SEL_ATOMS in the selected atom
set 1. They must also satisfy the RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN criterion. Note that
this makes these restraints static (i.e., not dynamic) and that you must set DYNAMIC_SPHERE to off
before evaluating the molecular pdf if you want to avoid duplicated restraints. These restraints should
usually not be combined with the Lennard-Jones (*LJ?) restraints.

When INTERSEGMENT is on, the inter-segment non-bonded restraints are also constructed; otherwise,
the segments do not feel each other via the non-bonded restraints. This option does not apply to the
OPTIMIZE command where information about segments is not used at all (i.e., OPTIMIZE behaves
as if INTERSEGMENT = on).

’LJ?. This constructs Lennard-Jones restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the ADD_RESTRAINT command. Only those non-bonded pairs are restrained that
have all or at least NONBONDED_SEL_ATOMS in the selected atom set 1. They must also satisfy the
RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN criterion. Note that this command makes the non-
bonded restraints static (i.e., not dynamic) and that you must set DYNAMIC_LENNARD to off before
evaluating the molecular pdf if you want to avoid duplicated restraints. Note that CHARMM uses both
’LJ14° and ’LJ’. For large molecules, it is better to calculate ’LJ’ as dynamic restraints because you can
use distance cutoff CONTACT_SHELL in OPTIMIZE to reduce significantly the number of non-bonded
atom pairs.

>COULOMB’. This constructs Coulomb restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the ADD_RESTRAINT command. Only those non-bonded pairs are restrained that
have all or at least NONBONDED_SEL_ATOMS in the selected atom set 1. They must also satisfy
the RESIDUE_SPAN_RANGE & RESIDUE_SPAN_SIGN criterion. Note that this command makes the
non-bonded restraints static (i.e., not dynamic) and that you must set DYNAMIC_.COULOMB to off
before evaluating the molecular pdf if you want to avoid duplicated restraints. Note that CHARMM uses
both >COULOMB14° and ’COULOMB’. For large molecules, it is better to calculate >COULOMB’ as dynamic
restraints because you can use distance cutoff CONTACT_SHELL in OPTIMIZE to reduce significantly
the number of non-bonded atom pairs.

’ ALPHA’ . This makes restraints enforcing an a-helix (mainchain conformation class “A”) for the residue
segment specified by the two RESIDUE_IDS (Section 2.4.1). The helix is restrained by ®, ¥ binormal
restraints, N-O hydrogen bonds, C,—C,, distances for i —j € {2 -9}, C,—O distances for i —j € {2—-9},
and O-0 distances for i — j € {2 — 6}. These target distances were all obtained from a regular a-helix
in one of the high-resolution myoglobin structures. A convenient way to add ’HELIX’, >STRAND’, or
> SHEET’ restraints to the calculation by the model’ script is to include them in the special restraints
routine (Section 1.9, Question 19). Note that at least the non-hydrogen mainchain atoms topology model
is required although the same functionality could also be provided for the C,-only topology with small
changes to the source code.

2.5. CALCULATION OF SPATIAL RESTRAINTS 83

e >STRAND’. This makes restraints enforcing an extended strand conformation for the residue segment
specified by the two RESIDUE_IDS (Section 2.4.1). This is achieved by applying ®, ¥ binormal restraints
only. These binormal restraints force the mainchain conformation into class “B”, except for the Pro
residues which are restrained to class “P” [?].

e ’SHEET’. This calculates H-bonding restraints for a pair of S-strands. ATOM_IDS specifies the two atom
identifiers (Section 2.5.1) defining the first H-bond in the S-sheet ladder. SHEET_H-BONDS specifies
the number of H-bonds to be added. The parallel and anti-parallel sheets are selected by a positive and
negative integer in SHEET _H-BONDS, respectively. In a parallel sheet, hydrogen bonds start at the first
or the second term of the following series (depending on ATOM_IDS): 1N:10, 10:3N, 3N:30, 30:5N, etc.
For an anti-parallel sheet, the corresponding series is 1N:30, 10:3N, 3N:10, 30:1N, etc; note that the
residue indices are always decreasing for the second strand. The extended structure of the individual
strands must be enforced separately by the >STRAND’ restraints if so desired.

e ’USER DISTANCE’. This makes distance restraints between pairs of atoms from set 2 and 3 (inter-set only),
using the value of RESTRAINT_PARAMETERS. Only distances satisfying the RESIDUE_SPAN_RANGE
criterion are restrained. This command is useful for making non-specific “compactization” restraints.

e ¢ Homology-derived restraints:

e ’DISTANCE’. This makes distance restraints that are generated for all pairs of atoms i, j where atom 4
is from selected set 2 and atom j is from selected set 3 (as defined by the PICK_ATOMS command).
The atoms also have to be within the residue spanning range specified by RESIDUE_.SPAN_RANGE =
rl r2, such that the residue index difference r1 < |ir2 —irl| < r2 when RESIDUE_SPAN_SIGN =
off and r1 < (ir2 —irl) < r2 when RESIDUE_SPAN_SIGN = on. Moreover, for a restraint to be
created, at least one distance in the template structures must be less than MAXIMAL_DISTANCE (in A).
RESTRAINT_STDEV = a b specifies the linear transformation for the first six standard deviation models
(¢! = a+bxo) These six models are polynomials and depend on several structural features of the template
and its similarity to the target. The polynomial coefficients are specified in library file >$PARAMS LIB’.
When “polynomial model” 7 is selected, the standard deviation of restraints is set to constant a. Each
basis pdf in the distance pdf corresponds to one template structure with an equivalent distance. The
mean of this basis pdf is equal to the template distance and its standard deviation is calculated from
an analytic model specified by DISTANCE_RSR_.MODEL. Use model 5 for C,-C, distances and model
6 for N-O distances. The weights of basis pdf’s depend on local sequence similarity between the target
and the templates when BASIS_PDF_WEIGHT = ’LOCAL’ and on global sequence identity when BASIS _-
PDF_WEIGHT = ’GLOBAL’. In addition, the atom pairs restrained by homology-derived restraints must
by default not be in a chemical bond, chemical angle, dihedral angle, or on an excluded pairs list. This
behavior can be changed by resetting EXCL_LOCAL (see OPTIMIZE).

e ’PHI-PSI_CLASS’, ’CHI1 DIHEDRAL’, *CHI2 DIHEDRAL’, *CHI3_DIHEDRAL’,6 ’>CHI4 DIHEDRAL’, ’PHI -
DIHEDRAL’, *PSI DIHEDRAL’, > OMEGA DIHEDRAL’, *PHI-PSI _BINORMAL’ are the mainchain and sidechain
dihedral angle restraints. Only those dihedral angles are restrained that have all or at least NON-
BONDED_SEL_ATOMS in the selected atom set 1. The means and standard deviations for the dihedral
Gaussian restraints are obtained from the $RESDIH_LIB and $MNCH? LIB libraries and their weights from
the MDT tables, specified by MDT_LIB_FILE and BIN_LIB_FILE. The large MDT tables give the condi-
tional weights for each possible dihedral angle class, as a function of all possible combinations of features
on which a particular class depends. If DIH_LIB_ONLY is ON or there is no equivalent residue in any of the
templates, the weights for the dihedral angle classes depend only on the residue type and are obtained
from the >$RESDIH LIB’ and ’$MNCH? LIB’ libraries; the DIH_LIB_ONLY argument allows one to force
the calculation of the “homology-derived” mainchain and sidechain dihedral angle restraints that ignore
template information. BASIS_PDF_WEIGHT has the same effect as for the distance pdf’s. MDT _LIB_FILE
and BIN_LIB_FILE have to be specified for all homology-derived restraints that depend on the MDT files,
including all mainchain and sidechain dihedral angle restraints. When MODELLER’s *OMEGA’ restraints
are calculated, the currently existing restraints on atoms 0 C +N +CA’ in all residues are automatically
deleted. These deleted restraints correspond to the improper dihedral angles involving the w atoms. They
are deleted because they could be “frustrated” by the new ’0OMEGA’ restraints. No action is taken with
regard to any of the previously existing, possibly duplicated dihedral angle restraints. Thus, to avoid
restraint duplication, including that of the *OMEGA’ restraints, call the CONDENSE_RESTRAINTS
command after all the restraints are calculated.

84 CHAPTER 2. MODELLER COMMANDS

BASIS_RELATIVE_WEIGHT is the cutoff for removing weak basis pdf’s from poly-Gaussian feature pdf’s: a
basis pdf whose weight is less than the BASIS_RELATIVE_WEIGHT fraction of the largest weight is deleted.

Example:

Example for: MAKE_RESTRAINTS, SPLINE_RESTRAINTS, WRITE_RESTRAINTS

This will compare energies of bond length restraints expressed
by harmonic potential and by cubic spline.

SET OUTPUT_CONTROL =1 1111

READ_TOPOLOGY FILE ’$(LIB) /top_heav.lib’

READ_PARAMETERS FILE ’$(LIB) /par.lib’

READ_MODEL FILE = ’1fas’, MODEL_SEGMENT = ’1:’ ’61:°

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE ’1fas.ini’

MAKE_RESTRAINTS RESTRAINT_TYPE = ’bond’
WRITE_RESTRAINTS FILE = ’1fas-1.rsr’
ENERGY DYNAMIC_SPHERE = off

SPLINE_RESTRAINTS SPLINE_RANGE = 5.0, SPLINE_DX = 0.005, SPLINE_SELECT = 3 1 1
CONDENSE_RESTRAINTS

WRITE_RESTRAINTS FILE = ’1fas-2.rsr’

ENERGY

2.5.4 DEFINE SYMMETRY — define similar segments

Options:
SYMMETRY_WEIGHT = (real: 1) 1.0 the weight of the symmetry objective function
term
ADD_SYMMETRY = (logical : 2) off on whether to add segment pair, add atoms to seg-
ment pair

Description: This command allows defining pairs of segments that will be restrained to be the same during
optimization of the objective function. This is achieved by adding the sum of squares of the differences
between the equivalent distances (similar to distance RMs deviation) to the objective function being optimized,
separately for each pair of segments defined by DEFINE_SYMMETRY. The value of this term is reported
in the log file by the ENERGY command, which also reports the individual contributions to the term when
OUTPUT contains word ’SYMMETRY’. In each call of the DEFINE_ SYMMETRY command, the list of
such segments is either initiated, extended by a new pair of segments, or the last defined pair of segments is
extended by adding new atoms.

SYMMETRY _WEIGHT specifies the atomic weights to be used in the calculation of the symmetry term
(Eq. 5.71).

The two segments correspond to the selected sets 2 and 3 (obtained by the PICK_RESTRAINTS com-
mand). They must have the same number of atoms.

2.5. CALCULATION OF SPATIAL RESTRAINTS 85

A pair of segments can be either added to the list (ADD_SYMMETRY[1] = on) or the list can be initialized
(ADD_SYMMETRY[1] = off).

If ADD_.SYMMETRY[2] = on, the currently selected atoms are added to the last segment pair in the segment
pairs list, otherwise a new segment pair is started.

Example:

Example for: DEFINE_SYMMETRY

This will force two copies of 1fas to have similar mainchain
conformation.

DEFINE_STRING VARIABLES = SEG1 SEG2

SET OUTPUT_CONTROL

11110

READ_TOPOLOGY FILE ’$(LIB) /top_heav.lib’
READ_PARAMETERS FILE = ’$(LIB)/par.lib’

Generate two copies of a segment:

READ_MODEL FILE = ’2abx’, MODEL_SEGMENT = ’1:A’ ’74:B’

SEQUENCE_TO_ALI ALIGN_CODES = ’2abx’, ATOM_FILES = ALIGN_CODES

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’2abx_ini’, ;
ATOM_FILES = ALIGN_CODES

GENERATE_TOPOLOGY SEQUENCE = ’2abx_ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

RENAME_SEGMENTS SEGMENT_IDS = ’A’ ’B’, RENUMBER_RESIDUES = 1 1

ENERGY DYNAMIC_SPHERE = off

RANDOMIZE_XYZ DEVIATION = 6.0

Define the two segments (chains in this case) to be identical:

CALL ROUTINE = ’defsym’, SEG1 = ’1:A’° ’74:A’, SEG2 = ’1:B’ ’74:B’

Make them identical by optimizing the initial randomized structure
without any other restraints:

ENERGY

WRITE_MODEL FILE = ’define_symmetry-1.atm’

OPTIMIZE MAX_ITERATIONS = 300

WRITE_MODEL FILE = ’define_symmetry-2.atm’

ENERGY

Now optimize with stereochemical restraints so that the
result is not so distorted a structure (still distorted
because optimization is not thorough):

SET DYNAMIC_SPHERE = on

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

RANDOMIZE_XYZ DEVIATION = 3.0

SET MAX_ITERATIONS = 300, MD_RETURN = ’FINAL’

OPTIMIZE OPTIMIZATION_METHOD = 1 # Conjugate gradients
OPTIMIZE OPTIMIZATION_METHOD = 3 # Molecular dynamics
OPTIMIZE OPTIMIZATION_METHOD = 1 # Conjugate gradients
WRITE_MODEL FILE = ’define_symmetry-3.atm’

ENERGY

DELETE_ALIGNMENT
READ_MODEL MODEL_SEGMENT = ’1:A’ ’74:A°

86 CHAPTER 2. MODELLER COMMANDS

READ_MODEL2 MODEL2_SEGMENT = ’1:B’ ’74:B’
PICK_ATOMS ATOM_TYPES = ’MNCH’
SUPERPOSE

STOP

SUBROUTINE ROUTINE = ’defsym’
SET ATOM_TYPES = ’MNCH’
SET SELECTION_STATUS = ’INITIALIZE’
SET SELECTION_SEARCH = ’>SEGMENT’

SET SYMMETRY_WEIGHT = 1.0

PICK_ATOMS PICK_ATOMS_SET = 2, SELECTION_SEGMENT = SEG1
PICK_ATOMS PICK_ATOMS_SET = 3, SELECTION_SEGMENT = SEG2
DEFINE_SYMMETRY ADD_SYMMETRY = on off

RETURN
END_SUBROUTINE

2.5.5 PICK_RESTRAINTS — pick restraints for selected atoms

Options:
RESIDUE_RANGE = TYPEVALUES DEFAULT DESCRIPTION
RESTRAINTS_FILTER = (real : 33) -999 -999 -999 -999 keep restraints?
-999 -999 -999 -999
-999 -999 -999 -999
-999 -999 -999 -999
-999 -999 -999 -999
-999 -999 -999 -999
-999 -999 -999 -999
-999 -999 -999 -999
-999
RESTRAINT_SEL_ATOMS = (integer : 1) 1 arestraint other than non-bonded pair has to have
at least as many selected atoms
ADD_RESTRAINTS = (logical : 1) off whether to add new restraints to existing re-

straints

Description: This command selects some or all of the restraints currently in memory.

If ADD_RESTRAINTS is on, the already selected restraints remain selected; additional restraints also be-
come selected if they satisfy currently specified conditions (see below). If ADD_RESTRAINTS is off, only
those restraints that satisfy currently specified conditions become selected. This command runs over all
restraints in memory, including the currently unselected restraints. Be careful about this: If you have
some unselected restraints in memory, PICK_RESTRAINTS may select them; to prevent this, do CON-
DENSE RESTRAINTS before calling PICK_RESTRAINTS.

A static restraint is selected if all or at least RESTRAINT_SEL_ATOMS of its atoms are selected (set 1), if it is

strong enough based on its standard deviations or force constants (see the next paragraph), and if it does not

span less (more) than the minimal (maximal) allowed number of residues specified by RESIDUE_RANGE. Note

that here the RESTRAINT_SEL_ATOMS is used also for the static non-bonded restraints, while MAKE _RESTRAINTS
and OPTIMIZE commands use NONBONDED_SEL_ATOMS for this purpose (RESTRAINT_SEL_ATOMS is

used in MAKE_RESTRAINTS only for most restraint type other than non-bonded pairs).

2.5. CALCULATION OF SPATIAL RESTRAINTS 87

To decide if a restraint is strong enough, the current standard deviations or force constants are compared
with the corresponding RESTRAINTS_FILTER[physical restraint_type]. A harmonic restraint, lower and upper
bounds, and multi-modal Gaussian restraints are selected if the (smallest) standard deviation is less than the
corresponding RESTRAINTS_FILTER[i]. The cosine energy term is selected if its force constant is larger
than the corresponding RESTRAINTS_FILTER[i]. If RESTRAINTS_FILTER[i] = —999, a restraint of type i is
always selected. Restraints of the other physical_restraint_types are always selected (Coulomb, Lennard-Jones,
binormal, and spline). The RESTRAINTS_FILTER angles have to be specified in radians.

Example:

Example for: PICK_RESTRAINTS, CONDENSE_RESTRAINTS

This will pick only restraints that include at least one
CA atom and write them to a file.

SET OUTPUT_CONTROL =1 1111

READ_TOPOLOGY FILE ’$ (LIB) /top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’
ENERGY

PICK_ATOMS ATOM_TYPES = °CA N C O’

PICK_RESTRAINTS ADD_RESTRAINTS = off, RESTRAINT_SEL_ATOMS = 1
Delete the unselected restraints from memory:
CONDENSE_RESTRAINTS

ENERGY

WRITE_RESTRAINTS FILE = ’1fas.rsr’

2.5.6 CONDENSE_RESTRAINTS — remove unselected restraints

Description: This command removes all the unselected restraints from memory. In addition, it also removes
those cosine dihedral angle restraints (RESTRAINT_TYPE = *DIHEDRAL’) that operate on the same atoms
as any other restraints on a dihedral angle or a pair of dihedral angles. Such restraints include the MODELLER
’PHI_DIHEDRAL’, ’PST_DIHEDRAL’, ’OMEGA DIHEDRAL’, *CHI1 DIHEDRAL’,>CHI2 DIHEDRAL’, >’CHI3_DIHEDRAL’,
’CHI4 DIHEDRAL’, *PHI PST _CLASS’, ’MRFP_DIHEDRAL’, and >PHI_PST BINORMAL’ dihedral angle restraints,
as well as the 2nd, 3rd, etc. cosine dihedral angle restraints on the same atoms; the improper dihedral angle
restraints are not considered here. For this command to work properly, the cosine dihedral angle restraints
must be constructed before any other dihedral angle restraints. This functionality is needed because some of
the CHARMM cosine terms are sometimes duplicated by other CHARMM cosine terms as well as by MODELLER
homology-derived mainchain and sidechain dihedral and bi-dihedral angle restraints. In the standard __model
script, the redundant CHARMM terms are always removed.

Example: See READ _MODEL command.

88 CHAPTER 2. MODELLER COMMANDS

2.5.7 ADD_RESTRAINT — add restraint

Options:
ATOM_IDS = (string: 0) 0 atom ids: ’atom:residue_id[:chain_id]’
RESTRAINT_PARAMETERS = (real:0) 3133420 0.0 restraint parameters

0.087

Description: This command adds a specified restraint to the end of the restraints list and selects it. It can also
add an excluded pair or a pseudo atom definition to the respective lists, depending on the dimension of
RESTRAINT_PARAMETERS (Section 2.5.1). This command is useful for specifying cis-peptide bonds from a
Torp script. The angles have to be in radians.

Example:

Example for: ADD_RESTRAINT, DELETE_RESTRAINT
This will enforce cis conformation for Pro-56.

Make a model and stereochemical restraints:
SET OUTPUT_CONTROL = 11110

DEFINE_STRING VARIABLES = ATOM_IDS1 ATOM_IDS2

READ_TQPOLQOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

Change the Pro-56 restraint from trans to cis:

CALL ROUTINE = ’cispeptide’, ATOM_IDS1 = ’0:56’ ’C:56° ’N:57’ ’CA:57°, ;
ATOM_IDS2 = ’CA:56’ ’C:56’ ’N:57’ ’CA:57’°

WRITE_RESTRAINTS FILE = ’1fas.rsr’

ENERGY

SUBROUTINE ROUTINE = ’cispeptide’
Delete the o0ld restraint on the same atoms:
DELETE_RESTRAINT ATOM_IDS = ATOM_IDS1
Add the new restraint:
ADD_RESTRAINT RESTRAINT_PARAMETERS = 3 1 3 3 4 2 0 3.141593 0.087

DELETE_RESTRAINT ATOM_IDS = ATOM_IDS2
ADD_RESTRAINT RESTRAINT_PARAMETERS =3 13 34 2 0 0.0 0.087

RETURN
END_SUBROUTINE

2.5. CALCULATION OF SPATIAL RESTRAINTS 89

2.5.8 DELETE _RESTRAINT — unselect restraint

Options:
ATOM._IDS = (string: 0) ? atom ids: ’atom:residue_id[:chain_id]”’

Requirements: MODEL

Description: This command scans the currently selected restraints to find all the restraints that operate on the
specified atoms (Section 2.5.1) and then unselects them. The order of the atom names in ATOM_IDS does
not matter: All restraints that contain all and only the specified atoms are unselected. This means that it
is not possible to distinguish between the dihedral angle and improper dihedral angle restraints on the same
four atoms.

The command only unselects the restraints found. To completely remove all the unselected restraints from
memory, use CONDENSE_RESTRAINTS. The DELETE_RESTRAINT command is useful in speci-
fying cis-peptide bonds from a TOP script.

Example: See ADD_RESTRAINT command.

2.5.9 REINDEX RESTRAINTS — renumber MODEL?2 restraints for MODEL

Requirements: restraints &8 MODEL & MODEL2

Description: This command renumbers atom indices in all restraints in memory. It is expected that the input re-
straints refer to MODEL?2; the re-indexed restraints will correspond to MODEL. Both MODEL and MODEL?2
have to be in memory. Only those restraints that have all atoms in MODEL will be selected. You can remove
the others by CONDENSE_RESTRAINTS. This command is useful when the old restraints have to be
used while changing from one topology model to another.

Example:

Example for: REINDEX_RESTRAINTS

This will reindex restraints obtained previously for a simpler topology so
that they will now apply to a more complicated topology.

Generate the model for the simpler topology (CA only in this case):

READ_TOPOLOGY FILE = ’$(LIB)/top_ca.lib’

READ_PARAMETERS FILE = ’$(LIB)/par_ca.lib’

SET TOPOLOGY_MODEL = 7

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ca’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ca’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ca’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE = ’1fas.ca’

Generate the restraints for the simpler topology:
MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’
WRITE_RESTRAINTS FILE = ’1fas-ca.rsr’

ENERGY

Generate the model for the more complicated topology:

90

CHAPTER 2. MODELLER COMMANDS

READ_TOPOLOGY FILE

READ_PARAMETERS FILE

SET TOPOLOGY_MODEL = 3

READ_MODEL FILE = ’1fas’

SET ADD_SEQUENCE = off

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

WRITE_MODEL FILE

’$(LIB) /top_heav.lib’
’$(LIB) /par.lib’

’1fas.ini’

READ_MODEL2 FILE = ’1fas.ca’
REINDEX_RESTRAINTS
WRITE_RESTRAINTS FILE = ’1fas.rsr’
ENERGY

2.5.10 SPLINE_RESTRAINTS — approximate restraints by splines

Options:
SPLINE_DX = (real : 1) 0.5 interval size for splining restraints
SPLINE_MIN_POINTS = (integer : 1) 5 have at least as many intervals in a spline
SPLINE_RANGE = (real : 1) 4.0 range of the splines
SPLINE_SELECT = (integer : 3) 419 specification of the restraints to be splined: form

feature group

The ENERGY command keywords

Description: This command calculates and selects new restraints that are a spline approximation of the selected

restraints of the specified type. It unselects the approximated restraints.

The type of the approximated restraints is specified by SPLINE_SELECT and is defined by the mathematical
form (Gaussian, etc), feature type (distance, etc), and physical restraint group (sidechain xi, etc) (the first,
third, and fourth integer numbers in the restraint specification).

The restraint is approximated in a certain range only, determined differently for different mathematical forms.
For example, the poly-Gaussian range is from m — SPLINE_RANGE X ¢,,, to M + SPLINE_RANGE x o, where
m and M are the minimal and maximal means of the basis pdfs, and ¢, and o) are their corresponding
standard deviations.

The spline points are distributed evenly over this range with an interval of SPLINE_DX. SPLINE_DX should

be equal to the scale of the peaks of the restraint that you want to approximate reliably. The value of the
restraint beyond the range is determined by linear extrapolation using the first derivatives at the bounds.

If the x-range and SPLINE_DX are such that the number of spline points would be less than SPLINE -
MIN_POINTS, SPLINE_DX is decreased so that there are SPLINE_MIN_POINTS defining the “splined” restraint.

Example: See MAKE_RESTRAINTS command.

2.5.11 READ_RESTRAINTS — read spatial restraints

Options:
FILE = (string: 1) ’default’ input restraints file
DIRECTORY = (string:1) 2 directory list (e.g., ’dirl:dir2:dir3:./:/?)

FILE_ZFORMAT = TYPEVALUES DEFAULT DESCRIPTION

2.5. CALCULATION OF SPATIAL RESTRAINTS 91

ADD_RESTRAINTS = (logical : 1) off whether to add new restraints to existing re-
straints

Description: This command reads restraints, excluded atom pairs, and pseudo atom definitions from a file. An
excluded atom pair specifies two atoms that are not to be tested during generation of the dynamic non-bonded
pair list. There is one restraint entry per line. The two possible formats of the file, MODELLER and USER, are
described in Section 2.5. The routine determines automatically which format is used. The new restraints are
added to those that are already in memory if ADD_RESTRAINTS = on, otherwise they initiate the restraints
list. All the new restraints are automatically selected.

Example: See MAKE _RESTRAINTS command.

2.5.12 WRITE_RESTRAINTS — write spatial restraints

Options:
FILE = (string: 1) ’default’ partial or complete filename
OUTPUT_DIRECTORY = (string:1)) output directory
FILE_LFORMAT = TYPEVALUES DEFAULT DESCRIPTION

Description: This command writes the currently selected restraints to a file in the MODELLER format (see
Section 2.5). If *UNFORMATTED’ format is selected the file is approximately one third of the FORMATTED’ size.
Both formats can be read with the READ_RESTRAINTS command. The output in the USER format is
not yet implemented.

Example: See MAKE RESTRAINTS command.

92

CHAPTER 2. MODELLER COMMANDS

2.6 Optimization of the model

This section describes commands for creating, reading and writing optimization schedule, and for calculating and
optimizing the objective function. For technical background, see Section 5.2.

2.6.1 MAKE_SCHEDULE — create optimization schedule

Options:
LIBRARY_SCHEDULE = (integer : 1) 1 selects schedule from the $SCHED_LIB library
SCHEDULE_SCALE = (real : 33) 1111111111 factors for physical restraint types in scaling the

1111111111 schedule
1111111111
111

Requirements: MODEL

Output: N.SCHEDULE

Description: This command constructs an optimization schedule for the variable target function method for the

current MODEL.
The template for construction of the schedule is the LIBRARY_SCHEDULE-th entry in library file $SCHED_LIB.

The usual schedule for the variable target function part of optimization in comparative modeling is as follows.
The residue range (PICK_RESTRAINTS and Section 2.5.3) is increased with increasingly larger steps until
the protein length is reached. The scaling of homology-derived and bonded stereochemical restraints increases
from a small value to 1 in the initial few steps to allow for imperfect starting geometries, especially those
that result from RANDOMIZE _XYZ and long insertions or deletions. The soft-sphere overlap restraints
are slowly introduced only in the last four steps of the variable target function method to save CPU time and
increase the radius of convergence. In comparative modeling by the >model’ script in the default mode, the
variable target function method is usually followed by simulated annealing with molecular dynamics. In this
last stage, all homology-derived and stereochemical restraints are generally used with the scaling factors of
1. There are a number of variables defined in the ’mod1ib/__defs.top’ script that can be used to influence
the thoroughness of both the variable target function and molecular dynamics parts of the optimization
(Chapter 3).

The scaling factors for all physical restraint groups, in all schedule steps, are multiplied by the corresponding
scalar in SCHEDULE_SCALE (1 by default). This is useful when template-derived fold restraints have to be
weakened relative to some external restraints, so that the fold can actually reflect these external restraints,
even when they are quite different from the template-derived restraints.

This command is an alternative to the READ_SCHEDULE command.

Use the WRITE_SCHEDULE command to find out what the calculated schedule is. The schedule file
written by the ‘model’ routine has an extension .sch.

Example:

Example for: MAKE_SCHEDULE, WRITE_SCHEDULE, READ_SCHEDULE

This will create an VIFM optimization schedule for a model
and write it to a file.

MODEL has to be in memory for MAKE_SCHEDULE:
READ_MODEL FILE = ’1fas’

MAKE_SCHEDULE LIBRARY_SCHEDULE = 1

Write the schedule to a file:
WRITE_SCHEDULE FILE = ’1fas.sch’

Read it in just for fun:

READ_SCHEDULE FILE = ’1fas.sch’

2.6. OPTIMIZATION OF THE MODEL 93

2.6.2 READ _SCHEDULE — read optimization schedule

Options:
FILE = (string: 1) ’default’ partial or complete filename
DIRECTORY = (string:1) 2 directory list (e.g., ’dirl:dir2:dir3:./:/?)
SCHEDULE_SCALE = (real: 33) 1111111111 factors for physical restraint types in scaling the
1 1 schedule
1

Output: N.SCHEDULE

Description: This command reads a text file that contains an optimization schedule for the variable target function
method.

Each line in the file contains in free format the parameters for a single step of the variable target function
method. These parameters are: step index (not used by the program), optimization method, maximal
difference in residue indices of atoms restrained by the selected restraints (PICK_RESTRAINTS and
Section 2.5.3), and the scaling factors for all types of restraints. The smaller the scaling factor, the weaker
the corresponding restraint.

See MAKE_SCHEDULE for explanation of SCHEDULE_SCALE.

This command also sets the TOP variable N.SCHEDULE to the total number of the variable target function
steps that were read in.

Example: See MAKE_SCHEDULE command.

2.6.3 WRITE_SCHEDULE — write optimization schedule

Options:
FILE = (string: 1) ’default’ partial or complete filename
OUTPUT_DIRECTORY = (string: 1) ? output directory

Description: This command writes out the schedule for the variable target function method. This schedule file
can then be read by the READ_SCHEDULE command.

Example: See MAKE_SCHEDULE command.

94 CHAPTER 2. MODELLER COMMANDS

2.6.4 ENERGY — evaluate MODEL given restraints

EXCL_LOCAL = (logical : 4)

LENNARD_JONES_SWITCH = (real : 2)

COULOMB_SWITCH = (real : 2)
RELATIVE_DIELECTRIC = (real : 1)
CONTACT_SHELL = (real: 1)

UPDATE_DYNAMIC = (real : 1)
NLOGN_USE = (integer : 1)

COVALENT_CYS = (logical : 1)

on on on on

6.5 7.5

6.5 7.5

1.0
4.0

0.39
15

off

Options:
VIOL_REPORT_CUT = (real : 33) 4.5 4.5 4.5 4.5 4.5 cutoffs for reporting relative violations
4.5 4.5 4.5 4.5 4.5
4.5 4.5 4.5 999 999
999 999 4.5 4.5 4.5
4.5 4.5 4.5 999 6.5
4.5 4.5 4.5 4.5 4.5
999 999 999
VIOL_REPORT_CUT2 = (real : 33) .0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0 2.0
2.0 2.0 2.0
OUTPUT = (string : 1) *LONG’ *SHORT’ | ’LONG’ | ’VERY_LONG’ | ’GRADIENT’
I ’ SYMMETRY’ | ’ENERGY_PROFILE’ I
’VIOLATIONS_PROFILE’
NORMALIZE_PROFILE = (logical : 1) off whether to normalize energy/violations profiles or
not, by the number of terms per residue
SMOOTHING_WINDOW = (integer :1) 3 profiles are smoothed over 2*SW + 1 residues
ASGL_.OUTPUT = (logical : 1) off whether to write output for ASGL
SCHEDULE_STEP = (integer : 1) 1 schedule step for optimization
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9
RADII_LFACTOR = (real : 1) 0.82 factor for van der Waals radii
SPHERE_STDV = (real : 1) 0.05 standard deviation of soft-sphere repulsion
DYNAMIC_SPHERE = (logical : 1) on whether to use dynamic soft-sphere repulsion
terms
DYNAMIC_LENNARD = (logical : 1) off whether to use dynamic Lennard-Jones energy
terms
DYNAMIC_COULOMB = (logical : 1) off whether to use dynamic Coulomb energy terms
DYNAMIC_MODELLER = (logical : 1) off whether to use dynamic MODELLER non-
bonded restraints
DYNAMIC_ACCESS = (logical : 1) off whether to use dynamic accessibility energy terms

whether to exclude bonds, angles, dihedrals, ex-
plicit excl pairs from the homology-derived dis-
tance rsrs

the range for Lennard-Jones interaction smooth-
ing to 0

the range for Coulomb interaction smoothing to 0
relative dielectric constant

distance cutoff for calculation of the non-bonded
pairs list
when to update non-bonded pairs list

number of residues at which to begin using the N
Log N non-bonded pairs routine

whether to consider SG-SG covalent bond sim-
ilar to polypeptide chain when proximity of
residues along the sequence is considered. If

PATCH_SS_MODEL is done, then make it ON.

2.6. OPTIMIZATION OF THE MODEL

RESIDUE_SPAN_RANGE = (integer : 2)

Output: MOLPDF

Requirements: MODEL & restraints

95

range of residues spanning the allowed
distances; for MAKE RESTRAINTS,
PICK_RESTRAINTS, non-bonded dynamic
pairs

Description: The main purpose of this command is to compare spatial features of the current MODEL with

the selected restraints in order to determine the violations of the molecular pdf. It lists variable amounts of
information about the values of the basis, feature, and molecular pdf’s for the current MODEL. All arguments
that affect the value of the molecular pdf are also relevant for the ENERGY command.

Most of the output goes to the log file. The output of the ENERGY command has to be examined carefully,
at least at the end of the optimization, when the final model is produced. Additional output files, for the
AsGL plotting program are created if ASGL_.OUTPUT = on (undocumented).

OUTPUT selects various kinds of output information:

e ’LONG’ writes restraint violations one per line to the log file.

e ’VERY _LONG’ writes the most detailed examination of the selected basis and feature pdf’s to the log file,
using several lines of output for each restraint.

e ’GRADIENT’ writes the ‘force’ gradients for the currently selected restraints to the isotropic temperature
factors for each atom of the current MODEL.

e ’SYMMETRY’ writes a comparison of equivalent distances involved in the definition of the symmetry
enforcing term to the log file.

VIOL_REPORT_CUT is a vector with one real number for each physical restraint type. A restraint is reported
when its ‘heavy relative violation’ is larger than the corresponding cutoff. The heavy relative violation
is calculated by finding the global minimum of a feature according to the restraint, taking the difference
between the actual feature in the model and this global minimum, and then normalizing the difference by the
standard deviation of the global minimum. The ‘minimal violation’ of a restraint is defined as the difference
from the local minimum closest to the value of the feature in the model (with the exception of the spline
restraints; see next paragraph).

VIOL_REPORT _CUT?2 is similar to VIOL_REPORT _CUT, except that it contains cutoffs for restraint ‘energies’,
not heavy relative violations.

The meaning of various other reported properties of the violated restraints is briefly described in the log file.
Note that for multi-modal restraints that are described by cubic splines (by default, all multimodal homology-
derived restraints), only one optimal value is defined, not the local and global minimum as for the multi-modal
Gaussian restraints. As a result, the minimal violations and heaviest violations are the same. For interpreting
the seriousness of violations, use the following rule of thumb: There should be at most a few small violations
(e.g., 4 standard deviations) for all monomodal restraints. In comparative modeling, the monomodal restraints
include the stereochemical restraints and distance restraints when only one homologous structure is used. For
the multimodal restraints, there are usually many violations reported because the heaviest violations are used
in deciding whether or not to report a violation. In comparative modeling, the multimodal restraints include
the x; restraints, (®, ¥) binormal restraints and distance restraints when more than one template is used.
See also Section 1.9, Question 22.

For profiles:

This command calculates residue energies or heavy relative violations, depending on OUTPUT, for all physical
restraint types (there are NPHYCNS of them). Relative heavy violations (Table 2.2) are used because only
relative violations of different features are comparable. In both cases, the residue sum is the sum over all
restraints that have at least one atom in a given residue. The contribution of each restraint is counted exactly
once for each residue, without any weighting. Restraints spanning more than one residue contribute equally
to all of them. Thus, the sum of residue energies is generally larger than molecular pdf. The command also

96

CHAPTER 2. MODELLER COMMANDS

calculates the sum of the NPHYCNS contributions for each residue and writes all NPHYCNS+1 columns to a file
suitable for plotting by ASGL.

If NORMALIZE_PROFILE is on the profile for each residue is normalized by the number of terms applying to
each residue.

All the curves are smoothed by the running window averaging method if SMOOTHING_WINDOW is larger than
0: The window is centered on residue i and extends for (SMOOTHING_WINDOW/2) - 1 residues on each side.
Thus, SMOOTHING_WINDOW has to be an even number (or it is made such by the program automatically).
The only exceptions are the two terminii, where a smaller number of residues are available for smoothing. The
relative weight of residue j when calculating the smoothed value at residue 7 is (SMOOTHING_-WINDOW /2 —
i —il).

The energy or the violations profile is written to the fourth column of the MODEL atomic records (atomic
isotropic temperature factors for X-ray structures). Note that all the atoms in one residue get the same
number. This output is useful for exploring the violations on a graphics terminal.

See description of OPTIMIZE for the other variables.

Example:

Example for: ENERGY

This will calculate the stereochemical energy (bonds,
angles, dihedrals, impropers) for a given model.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.1lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

Must patch disulfides here to calculate the non-bonded

energy properly. Also, when you use hydrogens, disulfides

must always be patched so that sulfhydril hydrogens are

removed from the model.

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = 17’ 39’
PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = '3 22
PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’53° ’59’
PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’41° ’52’

TRANSFER_XYZ
BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’
ENERGY DYNAMIC_SPHERE = on

2.6.5 OPTIMIZE — optimize MODEL given restraints

Options:
OPTIMIZATION_METHOD = (integer : 1) -999 type of optimization method: 1 | 3
SCHEDULE_STEP = (integer : 1) 1 schedule step for optimization
TOPOLOGY_MODEL = (integer : 1) 3 selects topology library: 1-9
RADII_LFACTOR = (real : 1) 0.82 factor for van der Waals radii

SPHERE_STDV = (real : 1) 0.05 standard deviation of soft-sphere repulsion

2.6. OPTIMIZATION OF THE MODEL 97

DYNAMIC_SPHERE = (logical : 1) on whether to use dynamic soft-sphere repulsion
terms

DYNAMIC_LENNARD = (logical : 1) off whether to use dynamic Lennard-Jones energy
terms

DYNAMIC_COULOMB = (logical : 1) off whether to use dynamic Coulomb energy terms

DYNAMIC_MODELLER = (logical : 1) off whether to use dynamic MODELLER non-
bonded restraints

DYNAMIC_ACCESS = (logical : 1) off whether to use dynamic accessibility energy terms

EXCL_LOCAL = (logical : 4) on on on on whether to exclude bonds, angles, dihedrals, ex-
plicit excl pairs from the homology-derived dis-
tance rsrs

LENNARD_JONES_SWITCH = (real:2) 6.5 7.5 the range for Lennard-Jones interaction smooth-
ing to 0

COULOMB_SWITCH = (real: 2) 6.5 7.5 the range for Coulomb interaction smoothing to 0

RELATIVE_DIELECTRIC = (real : 1) 1.0 relative dielectric constant

NONBONDED_SEL_ATOMS = (integer : 1) 1 a non-bonded pair has to have at least as many
selected atoms

RESIDUE_SPAN_RANGE = (integer :2) 0 99999 range of residues spanning the allowed
distances; for MAKE RESTRAINTS,
PICK_ RESTRAINTS, non-bonded dynamic
pairs

COVALENT_CYS = (logical : 1) off whether to consider SG-SG covalent bond sim-

ilar to polypeptide chain when proximity of
residues along the sequence is considered. If
PATCH_SS_MODEL is done, then make it ON.

CONTACT_SHELL = (real: 1) 4.0 distance cutoff for calculation of the non-bonded
pairs list

UPDATE_DYNAMIC = (real : 1) 0.39 when to update non-bonded pairs list

NLOGN_USE = (integer : 1) 15 number of residues at which to begin using the N
Log N non-bonded pairs routine

TRACE_OUTPUT = (integer : 1) 0 modulus for writing information about optimiza-
tion iterations: 0 for nothing

MAX_ITERATIONS = (integer : 1) 200 maximal iterations in optimization

OUTPUT = (string: 1) ’LONG’ ’NO_REPQORT’

e For conjugate gradients:
MIN_ATOM_SHIFTS = TYPEVALUES DEFAULT ’NO_REPORT’ | ’REPORT’
e For molecular dynamics:

MD_TIME_STEP = (real: 1) 4.0 time step for MD in fs

INIT_VELOCITIES = (logical : 1) on whether to initialize velocities before MD

TEMPERATURE = (real: 1) 293.0 temperature for MD simulation in K

EQUILIBRATE = (integer : 1) 999999 equilibrate during MD every that many steps

MD_RETURN = (string : 1) ’FINAL’ return MODEL with °MINIMAL’ energy or
’FINAL’ MODEL

CAP ATOM_SHIFT = (real: 1) 0.2 limit for atomic shifts in optimization

RAND_SEED = (integer : 1) -8123 random seed from -50000 to -2

STOP_ON_ERROR = (integer : 1) 1 whether to stop on error

Output: MOLPDF, MODELLER_STATUS
Requirements: MODEL & restraints

Description: This command performs a number of optimizing iterations using a selected optimization method
(5.2). One call to OPTIMIZE corresponds to a single step of the variable target function method. The

98

CHAPTER 2. MODELLER COMMANDS

whole variable target function method is implemented by a TOP script. The molecular pdf is optimized with
respect to the selected coordinates of the current MODEL; the optimized coordinates are returned as the
current MODEL.

Some output may be generated during optimization; for example, a value of the molecular pdf, average and
maximal atomic shifts are written to the current tracing file every TRACE_OUTPUT iterations of the optimizer
if TRACE_OUTPUT is larger than 0 (see the SWITCH_TRACE command).

In addition, a summary of the optimization results is written to the log file after optimization, unless OUTPUT
contains string ’NO_REPORT”’.

OPTIMIZATION_METHOD = 1 selects a conjugate gradients optimization method. OPTIMIZATION_METHOD
= 3 selects a molecular dynamics optimization at a fixed temperature. The conjugate gradients optimizer is
a modified version of the Beale restart conjugate gradients method [?,?]. The molecular dynamics routine is
the most basic version of the iterative solver of the Newton’s equations of motion. The integrator uses the
Verlet algorithm [?]. All atomic masses are set to that of carbon 12. A brief description of the algorithms is
given in Section 5.2.

SCHEDULE_STEP is the variable target function step. It selects some of the optimization parameters; it refers
to the line in the schedule file which specifies (1) the optimization method (1=Conjugate Gradients, 3=Molec-
ular Dynamics); (2) maximal number of residues that the restraints are allowed to span (Section 2.5.3); (3)
the individual scaling factors for all the physical restraint types. OPTIMIZATION_METHOD overrides the
schedule specification if it is within a defined range.

CONTACT _SHELL defines the maximal distance between atoms that flags a non-bonded atom pair. Such pairs
are stored in the list of non-bonded atom pairs. Only those non-bonded pairs that are sufficiently close to
each other will result in an actual non-boned restraint. If undefined (—999), the default value is the maximum
of the three possibilities: twice the radius of the largest atom multiplied by RADII_FACTOR (in the case of
the all non-hydrogen atoms model, this is 3.2 A); LENNARD_JONES_SWITCH[2]; or COULOMB_SWITCHI[2].
Only those values of the three possibilities are compared that have the corresponding DYNAMIC_SPHERE,
DYNAMIC_LENNARD, or DYNAMIC_COULOMB set to on. The best value for CONTACT_SHELL must be
found in combination with UPDATE_DYNAMIC (see also below). Good values are 4A for CONTACT_SHELL
and 0.39A for UPDATE_DYNAMIC when no Lennard-Jones and Coulomb terms are used; if CONTACT_SHELL
is larger, there would be many pairs in the non-bonded pairs list which would slow down the evaluation of
the molecular pdf. If it is too small, however, the increased frequency of the pair list recalculation may slow
down the optimization. It is useful in some simulations to be able to set CONTACT_SHELL to something
large (e.g., 8A) and UPDATE_DYNAMIC to 999999.9, so that the pairs list is prepared only at the beginning.
However, you have to make sure that the potential energy is not invisibly pumped into the system by making
contacts that are not on the list of non-bonded pairs (see below).

UPDATE_DYNAMIC sets the cumulative maximal atomic shift that triggers recalculation of the list of atom—
atom non-bonded pairs. It should be set in combination with CONTACT_SHELL. For soft-sphere overlap,
to be absolutely sure that no unaccounted contacts occur, UPDATE_DYNAMIC has to be equal to (CON-
TACT SHELL — maximal overlap distance) / 2. Maximal overlap distance is equal to the diameter of
the largest atom in the model; it is 3.2 A in the case of the all non-hydrogen atoms model. This distance is the
CONTACT_SHELL value if a default is requested. Factor 2 comes from the fact that the moves of both atoms
can reduce the distance between them. DYNAMIC_SPHERE has to be set to on for the automatic generation
of the soft-sphere overlap restraints. Another necessary condition is that the scaled standard deviation of the
soft-sphere overlap restraints is greater than zero. It is simpler not to pre-calculate any soft-sphere overlap
restraints and to use the dynamically generated restraints alone, although this may be slower.

Similarly, DYNAMIC_LENNARD, DYNAMIC_COULOMB, DYNAMIC_MODELLER and DYNAMIC_ACCESS de-
termine whether the dynamic Lennard-Jones terms, electrostatic interactions, MODELLER non-bonded spline
restraints and MODELLER atomic density restraints are calculated during optimization. Currently, the first
derivatives of the atom density restraints are set to 0. SHELL here xx.

EXCL_LOCAL[4] specifies whether or not the atoms in a chemical bond, chemical angle, dihedral/improper
angle, and in the excluded pairs list are considered in the construction of the non-bonded atom pairs list.
This is especially useful when simplified protein representations are used; e.g., when non-bonded restraints
need to be used on C,; — Cyipa terms.

2.6. OPTIMIZATION OF THE MODEL 99

The initial atom radii (before scaling by RADII_LFACTOR) depend on TOPOLOGY_MODEL which selects a
column of radii for the specified topology model from the $RADII_LIB library file.

RADII_FACTOR is the scaling factor for the atom radii as read from the library file. The scaled radii are used
only for the calculation of violations of the soft-sphere overlap restraints.

LENNARD_JONES_SWITCH is a real vector of two elements. It specifies rp,;, and 7,4, for the Lennard-Jones
interaction (Eq. 5.62). The potential is smoothed down to zero between these two distances.

COULOMB_SWITCH is a real vector of two elements. It specifies 7., and 7,4, for the electrostatic interaction
(Eq. 5.59). The potential is smoothed down to zero between these two distances.

RESIDUE_SPAN_RANGE determines what atom pairs can possibly occur in the dynamic non-bonded atom
pairs list (see MAKE RESTRAINTS). RESIDUE_SPAN_SIGN is ignored in OPTIMIZE. The effect of
RESIDUE_SPAN_RANGE is modulated by COVALENT_CYS. If COVALENT _CYS is on, the disulfide bridges
are taken into account when calculating the residue index difference between two atoms (i.e., disulfides make
some atom pairs closer in sequence). COVALENT_CYS = on is slow and only has an effect when certain
statistical non-bonded potentials are used (i.e., DYNAMIC_MODELLER is on and the non-bonded library has
been derived considering the disulfide effect). Thus, it should generally be set to off. The dynamic restraints
include soft-sphere overlap, Lennard-Jones, electrostatic restraints, and general spline restraints. The first
three types of restraints can also be generated as static restraints by MAKE_RESTRAINTS.

The automatically generated dynamic restraints are always deleted after a command that calculates them is
finished (OPTIMIZE, ENERGY, PICK_HOT_ATOMS); you have to use MAKE_RESTRAINTS to
calculate equivalent static restraints if you want to write the ‘dynamic’ restraints to a file.

MIN_ATOM_SHIFT is a convergence criterion for the conjugate gradients optimization. When the maximal
atomic shift is less than the specified value, the optimization is finished regardless of the number of optimiza-
tion cycles or function value and its change.

MAX_ITERATIONS is used to prevent a waste of CPU time in the conjugate gradients optimization. When
that many cycles are done, the optimization is finished regardless of the maximal atomic shift.

Before calculating dynamic non-bonded restraints, MODELLER determines which of the several routines is
most appropriate and efficient for calculating the non-bonded atom pairs list. The user can influence this
selection by specifying two variables: NONBONDED_SEL_ATOMS, which has an effect when only a subset of
all atoms is selected by the PICK_ATOMS or PICK_HOT_ATOMS commands (set 1), and NLOGN_USE,
which has an effect when all atoms are selected. If NONBONDED_SEL_ATOMS is 2 (default), the non-bonded
pairs will contain only selected atoms (set 1). This means that the optimized atoms will not “feel” the rest of
the protein through the non-bonded terms at all. If NONBONDED _SEL_ATOMS is 1, only one of the atoms
in the non-bonded pair has to be a selected atom. This means that the selected region feels the rest of the
system through the non-bonded terms, at the expense of longer CPU times. When all atoms are selected,
NONBONDED_SEL_ATOMS of course has no effect. However, in that case, NLOGN_USE is used to select
either a straightforward O(n?) search or a cell-based algorithm which has nlogn dependency of CPU time
versus size n. The latter algorithm is used when the maximal difference in residue indices of the atoms in the
current dynamic restraints is larger than NLOGN_USE or when the box size for this algorithm would have to
be larger than 8A.

The molecular dynamics optimizer pretends that the natural logarithm of the molecular pdf is energy in
kcal/mole. MD_TIME_STEP is the time step in femtoseconds. TEMPERATURE is the temperature of the
system in degrees Kelvin. MAX_ITERATIONS determines the number of MD steps. If MD_RETURN is >’FINAL’
the last structure is returned as the MODEL. If MD_RETURN is >MINIMAL’ then the structure with the lowest
value of the objective function on the whole trajectory is returned as the MODEL. Rescaling of velocities
is done every EQUILIBRATION steps to match the specified temperature. Atomic shifts along one axis are
limited by CAP_ATOM_SHIFT. This value should be smaller than UPDATE_DYNAMIC. If INIT_VELOCITIES
= on, the velocity arrays are initialized, otherwise they are not. In that case, the final velocities from the
previous run are used as the initial velocities for the current run.

RAND_SEED is the seed for the random number generator. It has to be between —2 and —50000. Its value
is changed after the return from the optimization routine.

MOLPDF contains the value of the objective function at the end of optimization.

MODELLER_STATUS is set to 1 if optimization is aborted because dynamic restraints could not be calculated
as a result of a system being too large. If MODELLER _STATUS is equal or greater than STOP_ON_ERROR

100 CHAPTER 2. MODELLER COMMANDS

the execution is stopped. Otherwise the execution returns back to the TOP routine, exiting all optimization
routines immediately. The execution then continues as if nothing happened. It is up to the calling Topr
routine to ensure that sensible action is taken; e.g., skipping the rest of modeling for the model that resulted
in an impossible function evaluation. This option is useful when calculating several independent models
and you do not want one bad model to abort the whole calculation. A probable reason for an interrupted
optimization is that it was far from convergence by the time the calculation of dynamic restraints was first
requested. Two possible solutions are: (1) optimize more thoroughly (i.e. slowly) and (2) use a different
contact pairs routine (SET NLOGN_USE = 9999). MODELLER_STATUS can be used in the ToOP routine to
exit from an optimization of a hopeless model and to continue with another model from a different initial
conformation.

Example:

Example for: OPTIMIZE, SWITCH_TRACE

This will optimize stereochemistry of a given model, including
non-bonded contacts.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;
ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE = ’1fas.ini’

Generate the restraints:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

WRITE_RESTRAINTS FILE = ’1fas.rsr’

ENERGY DYNAMIC_SPHERE = on

SWITCH_TRACE TRACE_QUTPUT = 1, FILE = ’1fas.trc’

OPTIMIZE OPTIMIZATION_METHOD = 1, MAX_ITERATIONS = 20

OPTIMIZE OPTIMIZATION_METHOD = 3, TEMPERATURE = 300, MAX_ITERATIONS = 50
OPTIMIZE OPTIMIZATION_METHOD 1, MAX_ITERATIONS = 20

ENERGY

WRITE_MODEL FILE = ’1fas.B’

2.6.6 SWITCH_TRACE — open new optimization trace file

Options:
FILE = (string: 1) ’default’ partial or complete filename
DIRECTORY = (string: 1) ? directory list (e.g., dirl:dir2:dir3:./:/?)
TRACE_OUTPUT = (integer: 1) 0 modulus for writing information about optimiza-

tion iterations: 0 for nothing

Description: This command specifies the file for the subsequent optimization tracing output. It is useful for
separating tracing output for different models constructed in a single run of MODELLER. The tracing output
is only produced if TRACE_OUTPUT is larger than 0. The tracing file includes the iteration number, number

2.6. OPTIMIZATION OF THE MODEL 101

Column Description

iteration number within one step of the variable target function method
number of function evaluations within one step of VIFM

objective function value

average atomic shift

maximal atomic shift

proportional to the gradient

kinetic energy

temperature for molecular dynamics optimization

total energy (kinetic and potential; potential = objective function value)

NolNo JBEN eI g N N

Table 2.5: Columns in an optimization trace file.

of function evaluations, function value, average and maximal atomic shifts, the size of the gradient vector,
kinetic energy (for molecular dynamics ‘optimization’ only), temperature (MD only) and total energy. This
is written out in every TRACE_OUTPUT-th cycle of whatever optimization method is used, starting with the
state just before the optimization (iteration 0).

When using the model script for comparative modeling, there is one .D file for each .B file with a model. The
.D files contain information about the progress of optimization, from the beginning to the end. The most
important column is column 3, which contains the value of the objective function, which is being optimized, as
a function of the iteration step (every 10 steps, by default). Thus, the best model, according to MODELLER,
is the one that has the lowest number in the third column of the last line of its .D file. This value is also
written out in the REMARK record of the PDB file containing the model and in the log file.

Example: See OPTIMIZE command.

2.6.7 DEBUG_FUNCTION — test code self-consistency

Options:

DEBUG_FUNCTION_CUTOFF = (real:3) 0.01 0.001 0.1 cutoffs for reporting differences between numeri-
cal and analytical derivatives: absolute, relative
errors, factor_for_indiv_rstrs

DETAILED_DEBUGGING = (logical : 1) off whether to evaluate energy and derivatives wrt
each restraint

all the ENERGY options

Description: This command checks the self-consistency of the code for the objective function and its deriva-
tives by calculating and comparing numeric and analytical derivatives. All the parameters influencing the
evaluation of the molecular pdf are also relevant (see ENERGY). The derivative is reported if both the
absolute difference and the fractional difference between the two kinds of evaluations are larger than DE-
BUG_FUNCTION_CUTOFF[1] and DEBUG_.FUNCTION_CUTOFF[2], respectively.

When DETAILED_DEBUGGING is on, the analytic and numeric derivatives of each restraint with respect to
atomic positions are also compared for the atoms ‘violated’ by the whole molecular pdf. The absolute cutoff
for writing out the discrepancies is scaled by DEBUG_FUNCTION_CUTOFF(3]; the relative cutoff remains the
same as before.

When MODELLER is compiled in double precision, this test reports a smaller number of discrepancies.

Example:

Example for: DEBUG_FUNCTION

102 CHAPTER 2. MODELLER COMMANDS

This will use default MODELLER scripts to construct homology
restraints for 1fas. It will then use DEBUG_FUNCTION to test
the source code for the function and derivatives calculation
by comparing analytical and numerical first derivatives.
Some discrepancies will be reported but ignore them here.

INCLUDE
SET OUTPUT_CONTROL =1 1111

SET ALNFILE = ’debug_function.ali’

SET SEQUENCE = ’1fas’

SET KNOWNS = ’2ctx’ ’1nbt’

SET SPLINE_ON_SITE = off

CALL ROUTINE = ’model’, EXIT_STAGE = 1

To assign 0 weights to restraints whose numerical derivatives

code does not work (i.e., splines for angles and dihedrals):

READ_SCHEDULE FILE = ’debug_function.sched’

ENERGY

DEBUG_FUNCTION DEBUG_FUNCTION_CUTOFF = 15.00 0.10 0.1, DETAILED_DEBUGGING = on

Chapter 3

MODELLER scripts

This section describes some of the MODELLER scripts found in the $MODINSTALL6/bin/_*.top files. All these files
and brief descriptions are listed in Table 3.1.

Filename Description

_model.top the main script for comparative modeling with user alignment
_full homol.top the main script for comparative modeling with automatic alignment
_loop.top loop modeling (in development!)

_defs.top variable definitions for modeling by model

_—align strs_seq.top
_-getnames.top
__homcsr.top
__spline.top
__cispeptide.top
_default_patches.top
__special.top
__generate model.top
__single model.top
_multiple models.top
_refine.top
_loop.top
__sidehchain.top
__principal.top
__cluster.top
__spline. top

_-asgl mod.top
__complete.top
_fit.top

_mod.top

aligning many structures with a sequence

generating default filenames from protein codes
generating homology-derived restraints

generating splined restraints

defining cis-peptides

making topology patches during modeling by model
generating and reading special restraints/patches for modeling by model
generating initial models for modeling by model

used by model to generate a single model

used by model to generate an ensemble of models
molecular dynamics refinement for modeling by model
modeling of loops

modeling of a point mutation

principal components clustering

optimization by ’clustering’ and refinement

spline most restraint types in memory

plotting for clustering analysis (requires ASGL)
generating missing atoms in a PDB file

superposing two structures, given an alignment

the main include file including all other __*.top files

Table 3.1: List of MODELLER scripts.

3.1 Flowchart of comparative modeling by MODELLER

This section describes a flowchart of comparative modeling by MODELLER, as implemented in the model’ ToP
script. This script is also called by QUANTA and INSIGHTII. It can be used for a variety of modeling tasks, not
only for comparative modeling.

Input: script file, alignment file, PDB file(s) for template(s).

103

104

Output:

job.
job.
.rsr

job

job.
.B99997777
.V99997777
.D99997777
.BL99997777
.DL9999777?7

job
job
job
job
job

job.

log
ini

sch

1199997777

CHAPTER 3. MODELLER SCRIPTS

log file

initial conformation for optimization

restraints file

VTFEFM schedule file

PDB atom file(s) for the model(s) of the target sequence
violation profiles for the model(s)

progress of optimization

optional loop model(s)

progress of optimization for loop model(s)

initial structures for loop model(s)

The main MODELLER routines used in each step are given in parentheses.

1. Read and check the alignment between the target sequence and the template structures
(READ_ALIGNMENT and CHECK_ALIGNMENT).

2. Calculate restraints on the target from its alignment with the templates:

(a) Generate molecular topology for the target sequence (GENERATE_TOPOLOGY). Disulfides in the target
are assigned here from the equivalent disulfides in the templates (PATCH_SS_TEMPLATES). Any
user defined patches are also done here (as defined in TOP routine ‘special patches’).

(b) Calculate coordinates for atoms that have equivalent atoms in the templates as an average over all
templates (TRANSFER_XY?Z) (alternatively, read the initial coordinates from a file).

(¢) Build the remaining unknown coordinates using internal coordinates from the CHARMM topology library
(BUILD_-MODEL).

(d) Write the initial model to a file with extension .ini (WRITE_MODEL).
(e) Generate stereochemical, homology-derived, and special restraints (MAKE_RESTRAINTS) (alter-

natively, skip

this and assume the restraints file already exists):

stereochemical RESTRAINT_TYPE = ’bond angle dihedral improper’
mainchain dihedrals &, ¥ RESTRAINT_TYPE = ’phi-psi_binormal’

mainchain dihedral w RESTRAINT_TYPE = ’omega._dihedral’

sidechain dihedral x; RESTRAINT_TYPE = ’chil_dihedral’

sidechain dihedral x2 RESTRAINT_TYPE = ’chi2_dihedral’

sidechain dihedral x3 RESTRAINT_TYPE = ’chi3_dihedral’

sidechain dihedral x4 RESTRAINT_TYPE = ’chi4_dihedral’

mainchain CA-CA distance RESTRAINT_TYPE = ’distance’

mainchain N-O distance RESTRAINT_TYPE = ’distance’

sidechain—mainchain distance RESTRAINT_TYPE = ’distance’
sidechain—sidechain distance = RESTRAINT_TYPE = ’distance’
block distance restraints RESTRAINT_TYPE = ’distance’

user defined
non-bonded

CALL ROUTINE = ’special restraints’
pairs distance RESTRAINT_TYPE = ’sphere’; calculated on the fly

(f) Write all restraints to a file with extension .rsr (WRITE_RESTRAINTS).

3. Calculate model(s) that satisfy the restraints as well as possible. For each model:

(a) Generate the optimization schedule for the variable target function method (VIFM)

(MAKE_SC

HEDULE).

(b) Read the initial model (usually from the .ini file from 2.d) (READ_MODEL).

(¢) Randomize the initial structure by adding a random number between +DEVIATION angstroms to all
atomic positions (RANDOMIZE_XY?Z).

(d) optimize the model:

e Partially

optimize the model by VTFM; Repeat the following steps as many times as specified by

the optimization schedule:

3.2. SCRIPT FOR COMPARATIVE MODELING 105

— Read all the restraints by ‘rd restraints’ (READ_RESTRAINTS).

— Select only the restraints that operate on the atoms that are close enough in sequence, as specified
by the current step of VIFM (PICK_RESTRAINTS).

— Optimize the model by conjugate gradients, using only currently selected restraints (OPTI-
MIZE).

e Refine the model by simulated annealing with molecular dynamics, if so selected:
— do a short conjugate gradients optimization (OPTIMIZE).

increase temperature in several steps and do molecular dynamics optimization at each temper-
ature (OPTIMIZE).

decrease temperature in several steps and do molecular dynamics optimization at each temper-
ature (OPTIMIZE).

— do a short conjugate gradients optimization (OPTIMIZE).

(e) calculate the remaining restraint violations and write them out (ENERGY).

(f) write out the final model to a file with extension .B99997777 where 7?77 indicates the model number
(WRITE_MODEL). Also write out the violations profile. Also write superposed templates and models
if so selected by FINAL_MALIGN3D = 1.

(g) superpose the models and the templates, if so selected, and write them out (EXPAND_ALIGNMENT,
MALIGN3D).

(h) do loop modeling if so selected (-_loop).

3.2 Script for comparative modeling

The _model script implements the flowchart for comparative modeling by MODELLER that is described in the
previous Section 3.1. The script uses routines in several other files. It is structured so that it is easy to deal with
many different situations, some of which are described in Section 1.9. The script is too long to be listed here. It
can be found in $MODINSTALL6/bin/_model.top. The default values of its arguments are defined in the __defs
script file:

Define additional TOP variables needed for MODELLER:

DEFINE_INTEGER VARIABLES = STARTING_MODEL ENDING_MODEL RSTRS_REFINED
DEFINE_INTEGER VARIABLES = LOOP_STARTING_MODEL LOOP_ENDING_MODEL
DEFINE_INTEGER VARIABLES = MAX_ITERATIONS_STORE WRITE_INTERMEDIATES
DEFINE_INTEGER VARIABLES = IREPEAT REPEAT_OPTIMIZATION EXIT_STAGE
DEFINE_INTEGER VARIABLES = CREATE_RESTRAINTS REFINE_HOT_ONLY

DEFINE_INTEGER VARIABLES = MAX_VAR_ITERATIONS FINAL_MALIGN3D INITIAL_MALIGN3D
DEFINE_INTEGER VARIABLES = DO_LOOPS ID1B

DEFINE_REAL VARIABLES = VIOL_REP_STORE MAX_MOLPDF

DEFINE_REAL VARIABLES = MAX_CA-CA_DISTANCE MAX_N-0_DISTANCE

DEFINE_REAL VARIABLES = MAX_SC-SC_DISTANCE MAX_SC-MC_DISTANCE
DEFINE_STRING VARIABLES = MODEL MODEL2 CODE CODE2 ALNFILE MODEL2_FIT
DEFINE_STRING VARIABLES = CSRFILE KNOWNS SCHFILE FINAL_MODEL

DEFINE_STRING VARIABLES = GENERATE_METHOD RAND_METHOD MD_LEVEL

DEFINE_STRING VARIABLES = SEGFILE PDB_EXT TOPLIB PARLIB FAMILY FIT_IN_REFINE
DEFINE_STRING VARIABLES = ATOM_IDS1 ATOM_IDS2 OUTPUT2

DEFINE_STRING VARIABLES = LOOP_CSRFILE LOOP_INI_MODEL

DEFINE_STRING VARIABLES = LOOP_MD_LEVEL LOOP_INI_MODEL

DEFINE_STRING VARIABLES = LOOP_MODEL

default values for options in comparative modeling by MODELLER:

SET STARTING_MODEL= 1 # the index of the first model;

106 CHAPTER 3. MODELLER SCRIPTS

determines how many models are calculated;

SET ENDING_MODEL

n
[
=

the index of the last model;
determines how many models are calculated;

SET DEVIATION 4.0 # the amount of randomization of the initial model

must be > 0 if different final models are wanted;

=

SET DO_LOOPS = 0’ whether or not to do automatic loop refinement

can rely on automatic loop definition or
re-define select_loop_atoms routine.
SET LOOP_STARTING_MODEL = 1 # how many loop models to generate for

o# o
Hh
[e]
R
o
o
2]
S
g
53
[}
®
[}
*
o
]
~
2
~
2
~
2
~
~~
(S
h
o
R
B
(o]
.
h
o
R
<
®
[2]
2

SET LOOP_MD_LEVEL = ’refine_3’ # the same as for MD_LEVEL, but for loops

Do not forget to set WATER_IO, HETATM_IO, HYDROGEN_IO to ON if your model
includes WATER, HYDROGEN, and/or HETATM atoms.

Additional flexibility is provided by re-defining the TOP routines
’select_atoms’, ’special_restraints’, ’special_patches’, and
’rd_restraints’.

H OH o o H H

Options that are not changed frequently:

SET LIBRARY_SCHEDULE = 4 # 1 ... thorough var target func schedule
4 ... faster var target func schedule
SET MAX_VAR_ITERATIONS = 200 # maximal numb of iterations for the cycles
of the variable target function method
SET MD_LEVEL = ’refine_3’ # what kind of optimization is done after
the variable target function method:
’nothing’ ... nothing;
’refine_1’ ... very fast MD annealing;
’refine_2’ ... fast MD annealing;
’refine_3’ ... slow MD annealing;
’refine_4’ ... very slow MD annealing;
’refine_ 5’ ... very slow/large dt MD annealing;
SET REFINE_HOT_ONLY = O 1 ... select and optimize only HOT atoms in refine;
0 ... select and optimize all atoms in refine;

usually about half of the atoms are hot; in such cases,
0 is faster for sequences longer than about 100 aa
because a faster non-bonded pairs algorithm can be used.

H OH H R

SET RSTRS_REFINED = 1 # the types of restraints used to define
hot spots when MD_LEVEL <> ’nothing’:
0 ... stereochemistry only;
1 ... stereochemistry and dihedral;
2 ... all restraints;
SET EXIT_STAGE =0 # 0 ... no effect;
1 ... exit without any optimization after
restraints and an initial model are
calculated (more efficient than
REPEAT_OPTIMIZATION=0) ;

SET REPEAT_OPTIMIZATION = 1 # how many times the whole optimization
schedule (variable target function

3.2. SCRIPT FOR COMPARATIVE MODELING 107

method and refinement) is repeated
for each initial model;

SET TRACE_OUTPUT = 10 # every which CG or MD cycle is reported;
SET MAX_MOLPDF = 100E3 # abort optimization of the current model if
the molecular pdf is larger than this and

continue with the next model;

SET TOPLIB = ’>${LIB}/top_heav.lib’ # topology library (all non-hydrogen atoms);

SET TOPOLOGY_MODEL = 3 # corresponding topology model;
SET PARLIB = ’${LIB}/par.lib’ # parameters library;
SET WRITE_INTERMEDIATES = O # 0 ... do not write out intermediate
atom files during optimization;
#1 . write out intermediate atom files;
SET INITIAL_MALIGN3D = 0 # 0 ... do not do MALIGN3D before
TRANSFER_XYZ
1 ... do that.
SET FINAL_MALIGN3D = O #0 . do not do MALIGN3D and write
superposed templates & models
at the end of ’model’
1 ... do that.
SET GENERATE_METHOD= °’transfer_xyz’ # how to build the initial model:
’generate_xyz’ from internal coordinates
and write them to a file;
’transfer_xyz’ from template coordinates
and write them to a file;
’read_xyz’ read coordinates from
a file;
SET RAND_METHOD = ’randomize_xyz’ # a method to perturb the initial model:
’randomize_dihedrals’ ... uses DEVIATION
in degrees;
’randomize_xyz’ ... uses DEVIATION
in angstroms;
’nothing’
SET CREATE_RESTRAINTS = 1 # 0 ... read the restraints from a file;
1 ... make the restraints and write them
to a file before reading them
for the optimization; in addition
to the default restraints, the TOP
routine ’special_restraints’,
which may be re-defined in the
user TOP file, is called for any
user defined restraints that are
then also written to the same file.
SET SPLINE_ON_SITE = on # on ... convert some restraints into splines
off ... no conversion
SET OUTPUT_CONTROL =1 1110 # write real_output, notes, warnings, errors, dynmem
SET QUTPUT_CONTROL =1 0010 # write real_output, notes, warnings, errors, dynmem

Set maximal values for various distance restraints:
SET MAX_CA-CA_DISTANCE = 14.0

108

SET MAX_N-O_DISTANCE = 11.0
SET MAX_SC-MC_DISTANCE = 5.5
SET MAX_SC-SC_DISTANCE = 5.0

CHAPTER 3. MODELLER SCRIPTS

Routine ’user_after_single_model’ can be redefined to do whatever at the end

of each model calculation (e.g. comparison with X-ray structure).

To write out reports on individual optimizations:
SET OUTPUT = °NO_REPORT SHORT’

MSI for QUANTA:

The alignment file format (I/0):
SET ALIGNMENT_FORMAT = °PIR’

The extension added to all *.Bxxxxnn filenames:
SET PDB_EXT = °> ?
SET PDB_EXT = ’.modlr.pdb’

to prevent SUPERPOSE in refine() if molecules are too small:
SET FIT_IN_REFINE = ’NO_FIT’

To enable default filename generation if not explicitly defined:
SET MODEL = ’undefined’
SET CSRFILE = ’undefined’

Call this routine before calling ’model’ if you want real fast optimization

SUBROUTINE ROUTINE = ’very_fast’

SET STARTING_MODEL = 1
SET ENDING_MODEL = 1

SET MAX_CA-CA_DISTANCE = 10.0
SET MAX_N-0_DISTANCE = 6.0
SET MAX_SC-MC_DISTANCE = 5.0
SET MAX_SC-SC_DISTANCE = 4.

Note that all models
SET RAND_METHOD = ’nothing’
SET MAX_VAR_ITERATIONS = 50
SET LIBRARY_SCHEDULE = 7
SET MD_LEVEL = ’nothing’

RETURN
END_SUBROUTINE

3.3 Script for modeling of loops

will be the same if you do not change RAND_METHOD

The new loop optimization method relies on a scoring function and optimization schedule adapted for loop mod-

eling [7].

The corresponding TOP routine is called when you set DO_LOOPS to 1. Unless you re-define routine

select_loop_atoms, all regions around gaps in the alignment, whether they are insertions or deletions, will be
optimized thoroughly after the usual modeling procedure is finished. The loop optimization relies on a new scoring

function adapted for loop modeling.

XX

Example:

Homology modelling by the MODELLER TOP routine ’model’.

#
This can be ran with run_clustor model-loop.top, too.

3.3. SCRIPT FOR MODELING OF LOOPS 109

In addition to the standard overall homology modeling, at the end, this
routine also calls the thorough loop optimization routine, which generates
by default 25 loop models for each *.B99997777 model. The default

loop selection (regions around gaps) can be changed by re-defining
routine select_loop_atoms.

H H H H HH

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL =1 1110

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

SET STARTING_MODEL= 1
SET ENDING_MODEL = 1
(determines how many models to calculate)

SET DO_LOOPS = 1 # do loops extensively
SET LOOP_STARTING_MODEL = 1

SET LOOP_ENDING_MODEL = 4

SET LOOP_MD_LEVEL = ’refine_1’

SET MD_LEVEL = ’nothing’

CALL ROUTINE = ’model’ # do homology modelling

110 CHAPTER 3. MODELLER SCRIPTS

Chapter 4

Tor, MODELLER scripting language

111

112 CHAPTER 4. TOP, MODELLER SCRIPTING LANGUAGE

Chapter 5

Methods

5.1 Dynamic programming for sequence and structure comparison
and searching

In this section, the basic dynamic programming method for sequence alignment is described [?]. This method
forms the core of the pairwise and multiple sequence and structure comparisons as well as of the sequence database
searching.

5.1.1 Pairwise comparison

The residue by residue scores W;; can be used directly in the sequence alignment algorithm of Needleman &
Wunsch [?] to obtain the comparison of two protein sequences or structures. The only difference between the two
types of comparison is in the type of the comparison matrix. In the case of sequence, the amino acid substitution
matrix is used. In the case of 3D structure, the Euclidean distance (or some function of it) between two equivalent
atoms in the current optimal superposition is used [7].

The problem of the optimal alignment of two sequences as addressed by the algorithm of Needleman & Wunsch
is as follows. We are given two sequences of elements and an M times N score matrix W where M and N are the
numbers of elements in the first and second sequence. The scoring matrix is composed of scores W;; describing
differences between elements ¢ and j from the first and second sequence respectively. The goal is to obtain an
optimal set of equivalences that match elements of the first sequence to the elements of the second sequence. The
equivalence assignments are subject to the following “progression rule”: for elements ¢ and k from the first sequence
and elements j and [from the second sequence, if element i is equivalenced to element j, if element k is equivalenced
to element [and if k is greater than ¢, [must also be greater than j. The optimal set of equivalences is the one
with the smallest alignment score. The alignment score is a sum of scores corresponding to matched elements,
also increased for occurrences of non-equivalenced elements (ie gaps). For a detailed discussion of this and related
problems see [?].

We summarize the dynamic programming formulae used by MODELLER to obtain the optimal alignment since
they differ slightly from those already published [?,?]. The recursive dynamic programming formulae that give a
matrix D are:

113

114 CHAPTER 5. METHODS

P
Dij = ming Diyj1+ Wi
Qi
S . D;_1;+9(1)
P; = mm{ J
(5.1)
o . D;j; 1 +9(1)
s = Dt
where g(l) is a linear gap penalty function:
gl)=u+wv-1l. (5.2)

Note that only a vector is needed for the storage of P and). The uppermost formula in Eq. 5.1 is calculated for
1 =M and j = N. Variable [is a gap length and parameters u and v are gap-penalty constants.

The arrays D, P and Q are initialized as follows:

Din = 0, 1<e
W= gli—e), e<i<N

— 05]Se
Dos = {g(j—e), e<j<N (5.3)
P = Qip=o00, i=12....M
P = Qo; =00, ji=12,...,N

where parameter e is the maximal number of elements at sequence termini which are not penalized with a gap-
penalty if not equivalenced. A segment at the terminus of length e is termed an “overhang”. Note a difference
from [?] in the initialization of the P and Q arrays. Also note that only vectors @; and P; need to be stored in
computer, not the whole arrays.

The minimal score djs,y is obtained from
dy,Ny = min(D; n, Dy ;) (5.4)

where ¢t = M,M —1,....M —e and j = N,N —1,...,N — e to allow for the overhangs. The equivalence
assignments are obtained by backtracking in matrix D. Backtracking starts from the element D; ; = d n-

5.1.2 Variable gap penalty

This work is still in progress and is not described here.

5.1.3 Local versus global alignment

The Kruskal and Sankoff version of the local alignment is implemented [?]; this is very similar to the [?] method.
All the routines for the local alignment are exactly the same as the routines for the global alignment except that
during the construction of matrix D the alignment is restarted each time the score becomes higher than a cutoff.
The second difference is that the backtracking starts from the lowest element in the matrix, wherever it is.

5.2. OPTIMIZATION OF THE OBJECTIVE FUNCTION BY MODELLER 115

5.1.4 Similarity versus distance scores

Each scoring matrix contains a flag determining whether it is a distance or similarity matrix. An appropriate
optimization is used automatically. This is achieved by using exactly the same code except that one side of
comparisons is multiplied by —1 when dealing with similarities as opposed to distances.

5.1.5 Multiple comparisons

In the discussion of the previous section, we have assumed that the sequences or structures would be compared in
a pairwise manner. However, such pairwise comparisons of several related proteins may not be self consistent, ie
the following transitivity rule can be broken: If residue a from protein A is equivalent to residue b in protein B
which in turn is equivalent to residue ¢ in protein C then the residue a from protein A must also be equivalent to
residue ¢ from protein C. This property is not always attained in the set of usual pairwise comparisons relating a
group of similar proteins. For this reason we proceed by simultaneously aligning all proteins. This is achieved by
aligning the second sequence with the first one, the third sequence with the alignment of the first two, etc. A more
general tree-like growth of the multiple alignment is not yet implemented.

If the number of all proteins is N, N — 1 alignments must be made to obtain the final multiple comparison. It
is noted that once an equivalence or gap is introduced it is not changed in later stages.

5.2 Optimization of the objective function by MODELLER

This section describes the optimization methods implemented in MODELLER. The general form of the objective
function and the structure of optimization are similar to molecular dynamics programs, such as CHARMM [?].

5.2.1 Function

MODELLER minimizes the objective function F with respect to Cartesian coordinates of ~ 10,000 atoms (3D points)
that form a system (one or more molecules):

F= F(R) = Fsymm + Zci(fia Pi) (55)

where Fyyppm is an optional symmetry term defined in Eq. 5.71, R are Cartesian coordinates of all atoms, c is a
restraint i, f is a geometric feature of a molecule, and p are parameters. For a 10,000 atom system there can be on
the order of 200,000 restraints. The form of ¢ is simple; it includes a quadratic function, cosine, a weighted sum of
a few Gaussian functions, Coulomb law, Lennard-Jones potential, cubic splines, and some other simple functions.
The geometric features presently include a distance, an angle, a dihedral angle, a pair of dihedral angles between
two, three, four atoms and eight atoms, respectively, the shortest distance in the set of distances (not documented

further), solvent accessibility in AQ, and atom density expressed as the number of atoms around the central atom.
A pair of dihedral angles can be used to restrain such strongly correlated features as the mainchain dihedral angles
® and ¥. Each of the restraints also depends on a few parameters p; that generally vary from a restraint to a
restraint. Some restraints can restrain pseudo-atoms such as a gravity center of several atoms.

MODELLER allows some atoms to be fized during optimization; i.e., only selected atoms are allowed to be
moved. Similarly, MODELLER also allows only a subset of all restraints to be actually used in the calculation of the
objective function. Each subset is indicated by a list of indices specifying the selected atoms or restraints.

There are two kinds of restraints, static and dynamic, that both contribute to the objective function as indicated
in Eq. 5.5:
F=Fymm+Fs+Fy. (5.6)

The static restraints and their parameters are pre-defined; i.e., they are given before the call to the optimizer and
are not changed during optimization. The dynamic restraints are re-generated repeatedly during optimization.
Usually, the CPU time is spent evenly between the two kinds of restraints, although the dynamic restraints become
more important as the size of the system increases. All dynamic restraints are always selected and they can restrain
only pairs of atoms. In all other respects, the two kinds of restraints are the same.

116 CHAPTER 5. METHODS

The dynamic restraints are obtained from a dynamic pairs list (the non-bonded pairs list). Each dynamic pair
corresponds to at least one restraint, which may or may not be violated. The dynamic pairs list includes only the
pairs of atoms that satisfy the following three conditions: (1) One or both atoms in a pair are allowed to move.
(2) The two atoms are not connected through one, two, or three chemical bonds. (3) The two atoms are closer
than a preset cutoff distance (e.g., 4 A). There are on the order of 5000 atom pairs in the dynamic pairs list when
only soft-sphere overlap restraints are used. Currently, the restraint types on the dynamic atom pairs that can
be selected include the soft-sphere overlap, Lennard-Jones, Coulombic interactions, and MODELLER non-bonded
spline restraints. xx atom density?

The existence of the dynamic pairs list is justified by the fact that dynamic pairs are usually a small fraction of
all possible atom—atom pairs (N - (N —1)/2, where N is the number of atoms in a system). The use of the dynamic
pairs list becomes especially beneficent as the size of the system increases.

The actual algorithm for creating the dynamic pairs list varies with the size of the system, whether or not all
atoms are allowed to move, or whether or not the user wants to include the fixed environment in the calculation of
non-bonded restraints involving the selected atoms. See Section 2.6.5 for more information.

The hash-function algorithm is used to determine whether or not two atoms are a dynamic atom pair. This
algorithm is about 20 times slower than a lookup table but it requires much less memory and still spends a negligible
fraction of the total CPU time. A hash-function table is prepared only once before the start of the optimization
and any other operation involving an evaluation of the objective function (e.g., OPTIMIZE, ENERGY, and
PICK_HOT_ATOMS).

The dynamic pairs list is not necessarily re-generated each time the objective function is evaluated, although
the contribution of the restraint to the objective function is calculated in each call to the objective function routine
with the current values of the Cartesian coordinates. The dynamic pairs list is re-generated only when maximal
atomic shifts accumulate to a value larger than a preset cutoff. This cutoff is chosen such that there cannot be a
violation of a restraint without having its atom pair on the dynamic pairs list. The dynamic pairs list is recalculated
in ~ 20% and ~ 2% of the objective function calls at the beginning and the end of optimization, respectively.

Each evaluation of the objective function or of its first derivatives with respect to the Cartesian coordinates
involves the following steps:

1. Calculate non-fixed pseudo-atoms from the current atomic positions
(routine objfunc:pseudo).

2. Update the dynamic pairs list, if necessary (routine objfunc:upddyn).

3. Calculate the violations of selected restraints and all other quantities that are shared between the calculations
of the objective function and its derivatives (routine objfunc:getviol).

4. Sum the contributions of all violated restraints to the objective function and the derivatives (routine objfunc: -

getviol).

5.2.2 Optimizers

MODELLER currently implements a Beale restart conjugate gradients algorithm [?, 7] and a molecular dynamics
procedure with the Verlet integrator [?]. The conjugate gradients optimizer is usually used in combination with
the variable target function method [?] which is implemented with the ToP script (Section 3.1). The molecular
dynamics procedure can be used in a simulated annealing protocol that is also implemented with the TOP script.

Molecular dynamics

Force in MODELLER is obtained by equating the objective function F' with internal energy in kcal/mole. The
atomic masses are all set to that of C'2 (MODELLER unit is kg/mole). The initial velocities at a given temperature
are obtained from a Gaussian random number generator with a mean and standard deviation of:

U, = 0 (5.7)
T
0p = \/%=0.000263143\/T (5.8)

5.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF 117

where kg is the Boltzmann constant, m is the mass of one C!? atom, and the velocity is expressed in angstroms/-
femtosecond.

The Newton’s equations of motion are integrated by the Verlet algorithm [?]:

oF

vp(i+1) = (i) + 5 A (5.9)
z(i+1) = =z() +v,(i+1)A¢ (5.10)
4 = Ao 4.1868 - 10*7ﬁ (5.11)

m m

where velocities v(i + 1) are for t + At/2 and positions z(i + 1) for ¢t + At¢. Parameter c is a scaling factor so that
positions are expressed in angstroms, time in femtoseconds, and velocities in angstroms/femtosecond, given that
the objective function is in kcal/mole and atomic mass in kg/mole. In addition, velocity is capped at a maximum
value, before calculating the shift, such that the maximal shift along one axis can only be CAP_ATOM_SHIFT. The
velocities can be equilibrated every EQUILIBRATE steps to stabilize temperature. This is achieved by scaling the
velocities with a factor f:

f = VT/Ekin (5.12)
Natoms
m
Eiin =) Z (vi-l—vf,—i—vz) (5.13)

(3

where Ej;, is the current kinetic energy of the system.

5.3 Equations used in the derivation of the molecular pdf

5.3.1 Features and their derivatives
Distance

Distance is defined by points i and j:
d=/Tij - Ty = |Fi5| = 13 (5.14)
where
Ry == 7 . (5.15)
The first derivatives of d with respect to Cartesian coordinates are:

ad 7

= 5.16
or; |71 (5.16)
od od
= - _== 5.17
or; or; (5.17)
Angle
Angle is defined by points ¢, j, and k, and spanned by vectors ij and kj:
Q = arccos @j 'ij . (5.18)
|75 |17k
It lies in the interval from 0 to 180°. Internal MODELLER units are radians.
The first derivatives of o with respect to Cartesian coordinates are:
8? _ Oa 8005a: 1 1 T coso— kI (5.19)
or; Ocosa OF; V1 —cos? « Tij Tij Tkj

118

Oa da Ocosa 1 1 @cosa—
Oy, ~ Ocosa Oy, o V1 —cos?2a Tkj Tkj

s _ _od_ad

o, _ om om

CHAPTER 5. METHODS

F—J) (5.20)

’I“ij

(5.21)

These equations for the derivatives have a numerical instability when the angle goes to 0 or to 180°. Presently,
the problem is ‘solved’ by testing for the size of the angle; if it is too small, the derivatives are set to 0 in the hope
that other restraints will eventually pull the angle towards well behaved regions. Thus, angle restraints of 0 or 180°

should not be used in the conjugate gradients or molecular dynamics optimizations.

Dihedral angle
Dihedral angle is defined by points 4, j, k, and [(ijkl):

(T35 X Thj) - (Frj X Tha)
|Tij X Tl |[Frj X Fral

x = sign(x) arccos
where
sign(x) = sign[ij . (17” X Fk]) X (ij X Fkl)] .
The first derivatives of x with respect to Cartesian coordinates are:

%_ dy dcosyx
d¥ dcosy dF

where)
dx dcosy 1
dcosy dy ~ siny
and
0 cosy R R
= Tr; Xa
or; 7
0 cosx o I, -
py = Tig XaA—T X b
67‘]'
0 cosx L L
= = TrjyX b— Tij; X a
ark
dcosy L
—s5— = Ty xb
6'[‘[
" 1 Tlj X Thi Tij X Thj
a = = = = = —COSX o=
|7'ij X 'I‘kj| |T‘kj X T‘k1| |’I‘z'j X Tkjl
= 1 F"XFk' Fk'XFkl
b = — _ L cosx o
ks X Tha| \|Tij X T |Thj X Tl

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

. (5.31)

These equations for the derivatives have a numerical instability when the angle goes to 0. Thus, the following

set of equations is used instead [?]:

Tmj = Tij XTkj
Tnk = Tkj X Tkl
8)(- Tkj 7

= = i
or; r2 J

mj

(5.32)
(5.33)

(5.34)

5.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF

X _ _mhig
a7 r2,
Ox _ (TucThi g OX T T OX
or; r or, 1y, on
Ox TPk _q) OX Ty T Ox
o7 2 or % O

119

(5.35)

(5.36)

(5.37)

The only possible instability in these equations is when the length of the central bond of the dihedral, rj,
goes to 0. In such a case, which should not happen, the derivatives are set to 0. The expressions for an improper
dihedral angle, as opposed to a dihedral or dihedral angle, are the same, except that indices ijkl are permuted to

ikjl. In both cases, covalent bonds ij, jk, and kl are defining the angle.

Atomic solvent accessibility

XX

Atomic density

XX

5.3.2 Restraints and their derivatives

The chain rule is used to find the partial derivatives of the feature pdf with respect to the atomic coordinates.

Thus, only the derivatives of the pdf with respect to the features are listed here.

Single Gaussian restraint

The pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

=[]

A corresponding restraint ¢ in the sum that defines the objective function F' is

B IRYIETAS 1
c——lnp—i(T> —lnﬁ

The first derivatives with respect to feature f are:

de f-f
df o

1
e

Multiple Gaussian restraint

The polymodal pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

n n 1 1 f_fz 2
= wipi = Wi—F——€eX - .

A corresponding restraint ¢ in the sum that defines the objective function F' is

c=—Inp= —anwipi

i=1

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

120 CHAPTER 5. METHODS

The first derivatives with respect to feature f are:

g; 0j

de 1 o [f=fil
g - p;w,pl [] (5.43)

When any of the normalized deviations v; = (f — f;)/0; is large, there are numerical instabilities in calculating
the derivatives because v; are arguments to the exp function. Robustness is ensured as follows. The ‘effective’
normalized deviation is used in all the equations above when the magnitude of normalized violation v is larger than
cutoff rgauss1 (10 for double precision). This scheme works up to rgauss2 (200 for double precision); violations
larger than that are ignored. This trick is equivalent to increasing the standard deviation o;. A slight disadvantage
is that there is a discontinuity in the first derivatives at rgaussl. However, if continuity were imposed, the
range would not be extended (this is equivalent to linearizing the Gaussian, but since it is already linear for large
deviations, a linearization with derivatives smoothness would not introduce much change at all).

= 37 ; M?/2has to be smaller than the largest argument to exp (5.44)

4 = 1 rgauss2 — M (5.45)

M rgauss2 — rgaussl

rgauss?2 M — rgaussl

B = .
M rgauss2 — rgaussl (5.46)
_ -
v o= p (5.47)
F = A|+B (5.48)
o' = w/F (5.49)

Now, Eqgs. 5.41-5.43 are used with v’ instead of v. For single precision, M = 12, rgauss1 = 4, rgauss2 = 100.

Multiple binormal restraint

The polymodal pdf for a geometric feature (f1, f2) (e.g., a pair of dihedral angles) is

n n 1
p = sz’pi = Zwi
=1 i=1

27?(71,'0'% (1 —pzz)

1 fl_lei 2 fl_flifQ_fTQj f2_f2i 2
exp{_Q(l_p%) l(O1i) ~ 20 01 02 +(O)]} : (5.50)

where p < 1. p is the correlation coefficient between fi and f3. A corresponding restraint ¢ in the sum that defines
the objective function F' is

n
c=—Inp= —anwipi (5.51)

i=1

The first derivatives with respect to features fi; and fo are:

dc — 1 - " . 1 fl_flz'_ _f2—f2i
6_fl = » zzzl |:(.Uzp’l 0'1,'(]. — plg) (o1 Pz 02):| (552)
9c — 1 - " . 1 f2_f2i_ _fl—fli
af p > [wzpz P gy (p P >] : (5.53)

i=1

5.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF 121

Lower bound

This is like the left half of a single Gaussian restraint:

{5 154

where f is a lower bound and Dgauss 1S given in Eq. 5.38. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of a lower bound.
Upper bound

This is like the right half of a single Gaussian restraint:

o= { Bpaas ; z; (5.55)

where f is an upper bound and Pgauss 18 given in Eq. 5.38. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of an upper bound.
Cosine restraint

This is usually used for dihedral angles f:

c=1|b| —beos(nf + a) (5.56)

where b is CHARMM force constant, a is phase shift (tested for 0 and 180°), and n is periodicity (tested for 1, 2,
3, 4, 5, and 6). The CHARMM phase value from the CHARMM parameter library corresponds to a — 180°. The
force constant b can be negative, in effect offsetting the phase a for 180° compared to the same but positive force
constant.

de .
G bnsin(nf + a) (5.57)
Coulomb restraint
(1 o) (5.58)
1; f<h
s(ffifo) = RIS o5 < f < (5.59)
0; f>Ff

where g; and g; are the atomic charges of atoms ¢ and j, obtained from the CHARMM topology file, that are at a
distance f. Function s(f, f1, f2) is a switching function that smoothes the potential down to zero in the interval
from f; to fa (f2 > f1)- The total Coulomb energy of a molecule is a sum over all pairs of atoms that are not in
the same bonds or bond angles. 1-4 energy for the 1-4 atom pairs in the same dihedral angle corresponds to the
ELEC14 MODELLER term; the remaining longer-range contribution corresponds to the ELEC term.

The first derivatives are:

de CE

C
d_f —? + g af (560)
ds g(f N(f1=1) f<h
df = ?fz*f1;3 5 fl < f S f2 (561)

0; f>r

122 CHAPTER 5. METHODS

Lennard-Jones restraint

Usually used for non-bonded distances:

e= |- sttt (5.62)
f f

The parameters fi and fo of the switching function can be different from those in Eq. 5.59. The parameters A and
B are obtained from the CHARMM parameter file (NONBOND section) where they are given as E; and r; such
that E;;(f) = —4\/E:E;[(pi;/)2 — (pij/ f)°] in keal/mole for f in angstroms and p = (r; +r;)/2!/%; the minimum
of Eis —\/E;E; at f = (r; +;), and its zero is at f = p. The total Lennard-Jones energy should be evaluated
over all pairs of atoms that are not in the same bonds or bond angles. The parameters A and B for 1-4 pairs in
dihedral angles can be different from those for the other pairs; they are obtained from the second set of E; and r;
in the CHARMM parameter file, if it exists. 1-4 energy corresponds to the LJ14 MODELLER term; the remaining
longer-range contribution corresponds to the LJ term.

The first derivatives are:

dc Cs ds
— = ZZ_c= 5.63
T Y (56
A B
C = —12(5)2+6(=)° (5.64)
f f
Spline restraint
Any restraint form can be represented by a cubic spline [?]:
¢ = Acj+ Bejp+Ccj + Dcjyy (5.65)
fin—f
A = I - 5.66
fivi =i (60)
B = 1-4 (5.67)
1
¢ = E(Ag — A)(fir = £3)? (5.68)
1
D = 5(33 — B)(fj+1 — f3)° (5.69)
where f; < f < fij41.
The first derivatives are:
de c¢jp1—c¢; 342-1 3B2 -1
== (fi1 =) + ———(fir1 — fi)ja (5.70)

Af " fim—f 6 6

The values of ¢ and ¢’ beyond f; and f, are obtained by linear interpolation from the termini. A violation of
the restraint is calculated by finding the global minimum. A relative violation is estimated by using a standard
deviation (e.g., force constant) obtained by fitting a parabola to the global minimum.

Variable spacing of spline points could be used to save on memory. However, this would increase the execution
time, so it is not used.

Symmetry restraint

The asymmetry penalty added to the objective function is defined as

Fsymm = Z WiWj (dz] - d‘ILJ)Z (571)
i<j
where the sum runs over all pairs of equivalent atoms ij, w; is an atom weight for atom i, d;; is an intra-molecular
distance between atoms ij in the first segment, and d;-j is the equivalent distance in the second segment.

5.4. LIST OF COMMANDS, ARGUMENTS, AND DEFAULT VALUES 123

For each ¢ < j, the first derivatives are:

o
6dz’j
oc
od;;

.
20.),'(4)]‘ (dij - diJ) d—J (5.72)
)

7i

—2(4}1'(;)]‘ (d” — dl~)—
d;

ij

(5.73)

Thus, the total first derivatives are obtained by summing the two expressions above for all ¢ and j > ¢ distances.

5.4 List of commands, arguments, and default values

The top.ini file contains the list of all MODELLER commands, arguments, and default values of arguments.

—-—- COMMANDS:

O 00 ~N O U b WN =

BB B R R R D W WWWWWWWWNNDNDNDNDNNDNMDNDDNDERERRRRERFRRB B
OGN P WNFOOONOO P WNRFRONOOODOAOE WNEFEOOWLONOOOd WNERO

no_action

SET

STOP

LABEL

GO_TO
DEFINE_INTEGER
DEFINE_REAL
END_DO

DO

CALL

RESET

WRITE

OPERATE
STRING_OPERATE
DEFINE_STRING
DEFINE_LOGICAL
SUBROUTINE
END_SUBROUTINE
INCLUDE

RETURN

READ

OPEN

CLOSE

IF

WRITE_TOP
SYSTEM

INQUIRE
STRING_IF
READ_RESTRAINTS
READ_SCHEDULE
WRITE_RESTRAINTS
READ_MODEL
SUPERPOSE
COMPARE
WRITE_MODEL
WRITE_MODEL2
OPTIMIZE
ENERGY
READ_MODEL2
PICK_ATOMS
ROTATE_DIHEDRALS
READ_ALIGNMENT
DELETE_ALIGNMENT
SWITCH_TRACE

124

47 PATCH

48 TRANSFER_RES_NUMB
49 MAKE_SCHEDULE

50 WRITE_SCHEDULE

51 ID_TABLE

52 MAKE_WRITE_UHBD_LIB
53 BUILD_MODEL

54 GENERATE_TOPOLOGY
55 MAKE_RESTRAINTS

56 READ_TOPOLOGY

57 READ_PARAMETERS

58 WRITE_TOPOLOGY_MODEL
59 MAKE_TOPOLOGY_MODEL
60 ROTATE_MODEL

61 WRITE_ALIGNMENT

62 REORDER_ATOMS

63 PICK_RESTRAINTS

64 CONDENSE_RESTRAINTS
65 DELETE_RESTRAINT
66 ADD_RESTRAINT

67 TRANSFER_XYZ

68 RANDOMIZE_XYZ

69 DEBUG_FUNCTION

70 undefined70

71 PICK_HOT_ATOMS

72 REINDEX_RESTRAINTS
73 ALIGN

74 SEQUENCE_SEARCH

75 ALIGN3D

76 ORIENT_MODEL

77 DESCRIBE

78 SEQUENCE_COMPARISON
79 MALIGN3D

80 MALIGN

81 SEQUENCE_TO_ALI

82 PMF

83 MUTATE_MODEL

84 PATCH_SS_MODEL

85 WRITE_DATA

86 PRINCIPAL_COMPONENTS
87 READ_ALIGNMENT2

88 COMPARE_ALIGNMENTS
89 ALIGN_CONSENSUS

90 QUICK_AND_DIRTY

91 SPLINE_RESTRAINTS
92 RENAME_SEGMENTS

93 DEFINE_SYMMETRY
94 PATCH_SS_TEMPLATES
95 CHECK_ALIGNMENT

96 ALIGN2D

97 COLOR_ALN_MODEL

98 TIUPAC_MODEL

99 DENDROGRAM

100 EXPAND_ALIGNMENT
101 UNBUILD_MODEL

102 READ_ATOM_CLASSES
103 SEGMENT_MATCHING
104 READ_RESTYP_LIB
105 WRITE_PDB_XREF

106 MAKE_REGION

-—— KEYWORDS:

CHAPTER 5. METHODS

5.4. LIST OF COMMANDS, ARGUMENTS, AND DEFAULT VALUES

[y

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

W 0O NNNNTVTNNNTNANNNOODHODODDDODOOODOOOOO UG OO O Ol a D DD D DD DD DD WWwwwwwwwow
NP, OOWOO~NNOOhdWNRFR,OOONOU PR WNFEFOOONOOOOOEWNEFEFOOOONOOO B WNREROWOWOWNO O & WN -

0 ~NO O WN

ARGUMENTS
UPDATE_DYNAMIC
MATRIX_OFFSET
SPHERE_STDV
VIOL_REPORT_CUT
DEBUG_FUNCTION_CUTOFF
TRANSLATION
SA_STEP

SA_MVFRACT
SA_TFACTR

SA_TO

SA_TMIN
MIN_ATOM_SHIFT
DEVIATION
RMS_CUTOFFS
TEMPERATURE
MD_TIME_STEP
RADII_FACTOR
LENNARD_JONES_SWITCH
COULOMB_SWITCH
ROTATION_MATRIX
BASIS_RELATIVE_WEIGHT
SYMMETRY_WEIGHT
MAXIMAL_DISTANCE
RESTRAINTS_FILTER
RESTRAINT_PARAMETERS
SPHERE_RADIUS
SELECTION_SLAB
PICK_HOT_CUTOFF
CAP_ATOM_SHIFT
MOLPDF
GAP_PENALTIES_3D
CONTACT_SHELL
RESTRAINT_STDEV
PMF_GRID
RELATIVE_DIELECTRIC
ROTATION_ANGLE
ROTATION_AXIS
SPLINE_DX
SPLINE_RANGE
GAP_PENALTIES_2D
SCHEDULE_SCALE
CLUSTER_CUT
GAP_PENALTIES_1D
FAST_SEARCH_CUTOFF
VIOL_REPORT_CUT2
SIGNIF_CUTQOFF
SEGMENT_CUTOFF
FIX_OFFSETS
PSA_INTEGRATION_STEP
ATOM_ACCESSIBILITY
PROBE_RADIUS
REFERENCE_DISTANCE
I0O_UNIT

ID1

ID2

NUMBER_PLACES
FILE_EXISTS
OUTPUT_CONTROL
STOP_ON_ERROR
ERROR_STATUS

== RO

O O O OO O OOOo

33

o O NNR R

3

w

W = WHFHOONRFENERERROQO 2O
O P O FH OF N OB OO O B

w w
Wk NP W

e A C E a a l aa N V)

125

.00 # real arguments to the math operation

.39 # when to update non-bonded pairs list

.00 # substitution matrix offset for local alignment

.05 # standard deviation of soft-sphere repulsion

.5 4.54.54.54.54.54.54.54.54.54.54.54.5 999 999 999 999 4.5 4.5 4.5
.01 0.001 0.1 # cutoffs for reporting differences between numerical and analyti
.0 0.0 0.0 # translation vector for MODEL

.2 # amplitude of the Monte Carlo steps

.8 # fraction of accepted Monte Carlo steps

.9 # factor for temperature deacrease in MC SA

40.0 # starting SA temperature

0.01 # final SA temperature

0.010 # minimal atomic shift for the optimization convergence test

0.0 # coordinate randomizaton amplitude in angstroms

3.5 3.5 60 60 15 60 60 60 60 60 60 # cutoffs for RMS, DRMS, Alpha Phi Psi Omega

293.0 # temperature for MD simulation in K

4.0 # time step for MD in fs

0.82 # factor for van der Waals radii

6.5 7.5 # the range for Lennard-Jones interaction smoothing to 0
6.5 7.5 # the range for Coulomb interaction smoothing to 0
100010001 # rotation matrix for MODEL

0.05 # the cutoff weight of basis pdf’s for their removal

1.0 # the weight of the symmetry objective function term

999. # maximal distance for distance restraints

-999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999
3133420 0.00.087 # restraint parameters

10.0 # sphere radius for atoms selection
-9999 9999 0 0 O # slab for atoms selection: \Z{dz1} \Z{dz2} \Z{xtrans} \Z{ytran
.0 # radius for picking hot atoms

limit for atomic shifts in optimization

value of objective function
.75 # gap creation and extension penalties for structure/structure superpos
distance cutoff for calculation of the non-bonded pairs list
.0 # transforming factors for standard deviations (y=atbx) in models 1--6 o
.5 20 36 18 0 180 1 # translation and rotation grid for PMF calculation
relative dielectric constant

rotation of MODEL around axis [degrees]
.0 0.0 # rotation axis for MODEL

interval size for splining restraints

range of the splines
.361.2 0.9 1.2 0.6 8.6 1.2 0.0 # gap penalties for sequence/structure alignmen
111111111111111111111111111111111# factors for
-1.0 # definition of a cluster
-900 -50 # gap creation and extension penalties for sequence/sequence alignment
1.0 # if FAST_SEARCH is ON only sequences with database scan significance higher
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
4.0 5.0 # cutoff for adding sequences to alignment, max difference from the best
999999 # cutoff for writing out an alignment in SEGMENT_MATCHING
0. 1000. 2000. 3000. 4000. # offsets of the ALIGN2D alignment score for "fixed"
0.1 # integration step for WRITE_DATA

1.0 # accessible atoms for MAKE_REGION

1.4 # probe_radius for WRITE_DATA

3.5 # cutoff for selecting reference positions in SUPERPOSE
1 # I0 unit for file operations

ID1 for filename construction

ID2 for filename construction
2 # pre- and post-decimal point places
an output flag: 0 | 1
0110 # selects output, flow-control msgs, warnings, errors, dynamic mem msg
#
#

QU O OO O OOOON
H H O H H O H - H HH

2
1
1
5

whether to stop on error
application error status

126

O NN NNANNNANNNODOODOHDOODOODOOOOOOO OOl OO OlOral D DD DD DD DD DWW Wwwwwwww
O WO N WNRFR,OOO~NOU PR WNFEFOOONOOOOOEWNRFRFOOONOODO B WNREROOWOWOWNO O B WNRO©

O 00 ~NO Ol b WN =

[y
o

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

NUMBER_LINES
SCHEDULE_STEP
ROUTINE_TYPE
NLOGN_USE
SA_MOVSPERATM
RESIDUE_GROUPING
MAX_ITERATIONS
RAND_SEED
COMPARE_MODE
EXTEND_HOT_SPOT
TOPOLOGY_MODEL
RENUMBER_RESIDUES
N_SCHEDULE
DISTANCE_RSR_MODEL
ACCESSIBILITY_TYPE
RESIDUE_SPAN_RANGE
MAX_GAP_LENGTH
OPTIMIZATION_METHOD
GAP_EXTENSION
NUMB_OF _SEQUENCES
TRACE_QUTPUT
SEARCH_TOP_LIST
EQUILIBRATE
MAX_GAPS_MATCH
ALIGN_BLOCK
PICK_ATOMS_SET
PMF_INDICES
SEARCH_RANDOMIZATIONS
OFF_DIAGONAL
RESTRAINT_GROUP
OVERHANG
SPLINE_SELECT
LIBRARY_SCHEDULE
NONBONDED_SEL_ATOMS
SPLINE_MIN_POINTS
SHEET_H-BONDS
SMOOTHING_WINDOW
RESTRAINT_SEL_ATOMS
undefinedl
PROFILE_2D_PHYS
MIN_LOOP_LENGTH
SEGMENT_SHIFTS
SEGMENT_REPORT
MNCH_LIB
SEGMENT_GROWTH_N
SEGMENT_GROWTH_C
EXPAND_CONTROL
NUMB_OF_SEQUENCES2
MAXRES

REGION_SIZE
MAX_LOOP_LENGTH
0BJECTS

VARIABLES

ROUTINE

ROOT_NAME
DIRECTORY

FILE_ID

OPERATION

RESULT
STRING_ARGUMENTS
OBJECTS_FILE

H OO KR MHEREREFEFOOORKFHORUIOOKR HOOKREKERIEKERHRFKEREBERWRRRERRORRERERRERRERRNDNRERENDERERROREREERREBER BB B 2 9

CHAPTER 5. METHODS

0 # number of lines in the newly opened file

1 # schedule step for optimization

1 # generic routine type for a miscellaneous command

15 # number of residues at which to begin using the N Log N non-bonded pairs rou
30 #

1#

200 # maximal iterations in optimization

-8123 # random seed from -50000 to -2

selects the type of comparison: 1 | 2 | 3

whether to extend hot spots

selects topology library: 1--9

starting residue index for renumbering residues

the number of steps in the optimization schedule

the model for calculating distance restraints: 1--7

type of solvent accessibility: 1--10

99999 # range of residues spanning the allowed distances; for MAKE_RESTRAINTS,
999999 # maximal length of gap in protein comparisons

-999 # type of optimization method: 1 | 3

2 1 # extend insertions/deletions for that many residues, in PICK_ATOMS; don’t s
1 # number of sequences in the alignment

0 # modulus for writing information about optimization iterations: O for nothing
20 # the length of the output hits list

999999 # equilibrate during MD every that many steps

1#

1 # the last sequence in the first block of sequences

1213

O 00 K # WOoOWw

1 # index of the selected atoms set: 1
0000 #

0 # number of randomizations for calculating the significance of a sequence/sequ
100 # to speed up the alignment

26 # physical restraint group

un-penalized overhangs in protein comparisons

9 # specification of the restraints to be splined: {\tt form feature
selects schedule from the $SCHED_LIB library

a non-bonded pair has to have at least as many selected atoms

have at least as many intervals in a spline

specify hydrogen bonds in a beta-sheet

profiles are smoothed over 2*SW + 1 residues

a restraint other than non-bonded pair has to have at least as many selected

grour

O W~NOIL - = b O
H OH B O H H H - ®

33 # 1 ... 33 physical type to be presented as 2D energy profile2
inter-segment minimal lengths in SEGMENT_MATCHING

segment shifts +- in SEGMENT_MATCHING

1D6 # for SEGMENT_MATCHING

1 # which MNCH 1ib to use in MAKE_RESTRAINTS

reducing/growing segment N-termini in SEGMENT_MATCHING

reducing/growing segment C-termini in SEGMENT_MATCHING

9999 9999 1 10 0 # for controlling EXPAND_ALIGNMENT

0 # number of sequence in ALIGNMENT2

0 # user specified maximal number of residues

20 # size of exposed region in MAKE_REGION

15 # maximal length of a loop in PICK_ATOMS

’? # variable names or constants

2 #
’? # subroutine name

’undf’ # root of a filename for filename construction

’? ¢ directory list (e.g., \Z{dirl:dir2:dir3:./:/})

’default’ # file id for filename construction

’SUM’ # operation to perform: \Z{SUM} | \Z{MULTIPLY} | \Z{DIVIDE} | \Z{POWER} |
’? # variable name for the result of operation

>’ # arguments for string operation

’top.out’ # filename

variable names

5.4. LIST OF COMMANDS, ARGUMENTS, AND DEFAULT VALUES

11
12
13
14
15
16
17
18
19
20
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
31

STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
LOGICAL

INCLUDE_FILE

FILE

RECORD

THEN

ELSE

COMMAND

FILE_EXT
OUTPUT_DIRECTORY
FILE_ACCESS
FILE_STATUS
BUILD_METHOD
DIHEDRALS
RES_TYPES
ATOM_TYPES
VARIABILITY_FILE
ALIGN_CODES
ATOM_FILES

OUTPUT

CHANGE

FIT_ATOMS
MODEL_FORMAT
SEQUENCE
RESTRAINT_TYPE
ALIGNMENT_FORMAT
undefined81
ALIGNMENT_FEATURES
RESIDUE_TYPE
MATRIX_FILE
BASIS_PDF_WEIGHT
DISTANCE_ATOMS
REFERENCE_ATOM
undefined91
ATOM_IDS
SPHERE_CENTER
SELECTION_MODE
SELECTION_SEARCH
SELECTION_STATUS
SELECTION_SEGMENT
SELECTION_FROM
ALIGN_CODES2
MD_RETURN
ATOM_CLASSES_FILE
RR_FILE
SEARCH_CHAINS_FILE
MODEL_SEGMENT
MODEL2_SEGMENT
ATOM_FILES_DIRECTORY
SEARCH_SORT
RESTRAINTS_FORMAT
SEARCH_CHAINS_LIST
SEGMENT_IDS
RESIDUE_IDS
ALIGN_WHAT
CLUSTER_METHOD
SEARCH_GROUP_LIST
RESTYP_LIB_FILE
SWAP_ATOMS_IN_RES
ATOM_FILES2
INPUT_WEIGHTS_FILE
OUTPUT_WEIGHTS_FILE
FIT

H R R ORRRERRRER,OOKRKMEPREPEHNNRERERRERELORNFEPRERENOOKFRNKHEPAEHLOOOORROKREELOOHKRI K EORIERKRKFKRKKR R §HB§ B =

127

’__mod’ # include file name

’default’ # partial or complete filename
’undefined’ # contents of the input line
’undefined’ # statement when IF evaluates to T
’undefined’ # statement when IF evaluates to F

’nothing’ # UNIX command

>’ # file extension for filename construction

’? # output directory

’SEQUENTIAL’ # file access: \Z{SEQUENTIAL} | \Z{APPEND}

»UNKNOWN’® # file status: \Z{UNKNOWN} | \z{0LD} | \Z{NEW}

> INTERNAL_COORDINATES’ # method for building coordinates: \Z{INTERNAL_COORDINATE
’PHI’ °PSI’ ’CHI1’ °CHI2’ ’CHI3’ ’CHI4’ # dihedral angle type selection: \Z{phi}
’ALL’ # residue type selection

’ALL’ # atom type selection

’undefined’ # output filename

’all’ # codes of proteins in the alignment

’? # complete or partial atom filenames
’LONG’ # what and/or how to output
’RANDOMIZE’ # what to do: \Z{RANDOMIZE}
’CA’ # atom type(s) being superposed
’PDB’ # selects input atom file format: \Z{PDB} | \Z{CHARMM} | \Z{UHBD}
’undefined’ # protein code in the alignment whose topology is constructed
’STEREQ’ # restraint type to be calculated: \Z{STEREO} | \Z{BOND} | \Z{ANGLE} |
’PIR’ # format of the aligmnment file: \Z{PIR} | \Z{PAP} | \Z{QUANTA} | \Z{INSIGH
bl

>INDICES CONSERVATION’ # what alignment features to write out: \Z{ACCURACY} | \Z
’undefined’ #

’family.mat’ # the filename of the pairwise distance matrix

’LOCAL’ # a method for calculation of basis pdf weights: \Z{LOCAL} | \Z{GLOBAL}
’CA’> ’CA’ # atom types for distance generation

’? # reference atom name in SUPERPOSE
)

| \Z{OPTIMIZE}

>’ # atom ids: \Z{atom:residue_id[:chain_idl}

’undefined’ ’undefined’ # ’\#RES1:C’ ’ATOM_NAME’

’ATOM’ # selecting what: \Z{ATOM} | \Z{RESIDUE}

’SEGMENT’ # search method: \Z{SPHERE} | \Z{SEGMENT}

’INITIALIZE’ # what to do with selected atoms: \Z{ADD} | \Z{REMOVE} | \Z{INITIAL
’Q:@’ ’X:X’ # \Z{RES:CHN} ids for the first and last residues in a chain/segment
’ALL’ # selecting from: \Z{ALL} | \Z{SELECTED}

’all’ # align codes for alignment2

’FINAL’ # return MODEL with \Z{MINIMAL} energy or \Z{FINAL} MODEL

’$(LIB) /atmcls-melo.lib’ # library with atom class definitions for MODELLER non-
’$(LIB) /asl.sim.mat’ # input residue-residue scoring file

’$(LIB) /CHAINS_all.seq’ # file with a list of sequence codes

’Q:@’ ’X:X’ # segment to be read in

’@:@’ ’X:X’ # segment to be read in

>./? # input atom files directory list (e.g., \Z{dirl:dir2:dir3:./:/})

’LONGER’ # which sequence to use for normalization when sorting the hit list: \Z
’MODELLER’ # format of the restraints file: \Z{MODELLER} | \Z{USER}

’$(LIB) /CHAINS_3.0_40_XN.cod’ # file with sequences

’? # new segment ids

’? # residue id (number:chnid)

’BLOCK’ # what to align in ALIGN; \Z{BLOCK} | \Z{ALIGNMENT} | \Z{LAST}

’RMSD’ # what distance function to use in \C{CLUSTER}; \Z{RMSD} | \Z{MAXIMAL_DIS
’$(LIB) /CHAINS_3.0_40_XN.grp’ # file with 40\), groups of sequences

’$(LIB) /restyp.lib’ # residue type library

’? # minimize RMS by swapping atoms in these residues (1 char code: ’>DEFHLNQRVY’
’>? # complete or partial atom filenames for ALIGNMENT2

T #

T #

on # whether to do pairwise least-squares fitting or ALIGN2D alignment

128

32
35
36
37
38
39
40
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL

SUPERPOSE_REFINE
DYNAMIC_SPHERE
DYNAMIC_LENNARD
DYNAMIC_COULOMB
WRITE_FIT
ASGL_QUTPUT
ADD_RESTRAINTS
ADD_SEGMENT
REMOVE_GAPS
LOCAL_ALIGNMENT
WATER_IO
HETATM_IO
HYDROGEN_IO
INITIALIZE_XYZ
ADD_SEQUENCE
ALIGN3D_TRF
PATCH_DEFAULT
INTERSEGMENT
ALIGN3D_REPEAT
ALIGN_ALIGNMENT
INIT_VELOCITIES
ADD_SYMMETRY
SPLINE_ON_SITE
ADD_PARAMETERS
ADD_TOPOLOGY
WRITE_WHOLE_PDB
WRITE_ALL_ATOMS
CURRENT_DIRECTORY
DETAILED_DEBUGGING
DYNAMIC_PAIRS
DYNAMIC_MODELLER
FAST_SEARCH
DATA_FILE
NORMALIZE_PROFILE
CUT_OVERHANGS
RESIDUE_SPAN_SIGN
COVALENT_CYS
READ_WEIGHTS
DYNAMIC_ACCESS
DIH_LIB_ONLY
NO_TER
WRITE_WEIGHTS
EXCL_LOCAL

--- END OF FILE

[T T s T e e e S S S O e S T S S T e e e e e S I e e S S S S S S T

CHAPTER 5. METHODS

off # whether to refine the superposition
on # whether to use dynamic soft-sphere repulsion terms

off # whether to use dynamic Lennard-Jones energy terms

off # whether to use dynamic Coulomb energy terms

off # whether to write out fitted coordinates to .fit files
off # whether to write output for ASGL

off # whether to add new restraints to existing restraints
off # whether to add the new segments to the list of segments

on # whether to remove all-gap positions in input alignment

off # whether to do local as opposed to global alignment

off # whether to read water coordinates

off # whether to read HETATM coordinates

off # whether to read hydrogen coordinates

on # whether to use IC entries to calculate all coordinates

off # whether to add the new sequences to the existing alignment
off # whether to transform the distances before dynamic programming
on # whether to do default NTER and CTER patching

on # whether to restrain inter-segment non-bonded pairs

off # do several starts to maximize number of equivalent positions
off # writing out an alignment of alignments (for *)

on # whether to initialize velocities before MD

off on # whether to add segment pair, add atoms to segment pair
off # whether to convert restraints to splines

off # whether to add new parameters to existing omes

off # whether to add new residue topologies to existing ones

on # whether to write out all lines in the input PDB file

on # whether to write all atoms, even if unselected

on # whether to write output .fit files to current directory

off # whether to evaluate energy and derivatives wrt each restraint

off # whether to do dynamic pairs irrespective of anything

off # whether to use dynamic MODELLER non-bonded restraints

off # whether to use fast sequence search or not

off # whether results go to a separate file or not

off # whether to normalize energy/violations profiles or not, by the number of t
off # whether to cut overhangs at OVERHANG residues or not

on # whether to do N*(N-1)/2 loop for atom pairs in MAKE_RESTRAINTS RESTRAINT_T
off # whether to consider SG-SG covalent bond similar to polypeptide chain when
off # whether to read the whole NxM weight matrix for ALIGN*

off # whether to use dynamic accessibility energy terms

off # whether to use only library, not homologs for dihedral angle rsrs

off # whether to not write TER into PDB

off # whether to write the whole NxM weight matrix for ALIGN=*

on on on on # whether to exclude bonds, angles, dihedrals, explicit excl pairs f

The third column contains a number of values for each of the options if this
number is fixed, otherwise it contains O.

You can change any command or variable name without changing the source code
relying on this file, but you can not change the order of the lines.

Index

ACCESSIBILITY_TYPE, 60, 93

ADD_PARAMETERS, 39, 40

ADD _RESTRAINT, 21, 29, 94, 95, 100, 101

ADD_RESTRAINTS, 93, 98, 102

ADD_SEGMENT, 40, 41

ADD_SEQUENCE, 66, 69

ADD_SYMMETRY, 97

ADD_TOPOLOGY, 39

ALIGN, 11, 70, 73, 75, 77, 82

ALIGN2D, 11, 31, 35, 70, 74, 75

ALIGN3D, 74, 78, 81, 84

ALIGN3D_REPEAT, 81, 82

ALIGN3D_TRF, 81, 82

ALIGN_CONSENSUS, 70

ALIGN_ALIGNMENT, 31, 70

ALIGN_BLOCK, 30, 70, 73-77, 87

ALIGN_CODES, 30, 40, 42, 51, 61, 64, 66, 67, 69-72,
78, 80, 81, 83, 85

ALIGN_CODES?2, 30, 67

ALIGN_CONSENSUS, 77

ALIGN_WHAT, 73, 74

alignment, 11, 14, 64

ALIGNMENT_FEATURES, 70, 85

ALIGNMENT_FORMAT, 28, 66, 67, 70, 85

ARGUMENTS, 126, 129

ASGL_2D_OUTPUT, 30

ASGL_2D_TYPE, 30

ASGL_OUTPUT, 80, 81, 106

ATOM_FILES, 71

ATOM_FILES_DIRECTORY, 35, 70

ATOM_ACCESSIBILITY, 62

ATOM_CLASSES FILE, 40

ATOM_FILES, 40-42, 50, 61, 64, 67, 69-71, 80, 81, 83

ATOM_FILES_DIRECTORY, 35, 40-42, 47, 50, 70, 71,
80, 83, 93

ATOM.IDS, 95, 100, 101

ATOM_TYPES, 53, 54

BASIS_PDF_WEIGHT, 95, 96
BASIS_PDF_WEIGHT, 93
BASIS_RELATIVE_WEIGHT, 93, 96
bibliography, 2

BIN_LIB_FILE, 93, 96

BLOCK residues, 38

breakpoint, 34

bug reports, 8

BUILD, 28

129

BUILD_METHOD, 28, 30, 31, 48, 49
BUILD_MODEL, 31, 38, 41, 48, 51, 116

CALL, 128
CAP_ATOM_SHIFT, 108, 110, 136

CHANGE, 58

CHECK_ALIGNMENT, 116
CHECK_ALIGNMENT, 11, 14, 15, 27, 67
CLOSE, 127

CLUSTER, 50

CLUSTER_CUT, 50

CLUSTER.METHOD, 28, 50
COLOR_ALN_MODEL, 67

COMMAND, 127, 129

COMPARE, 31, 35, 72, 73, 80, 81
COMPARE_ALIGNMENTS, 67-69, 74
COMPARE_MODE, 80, 81
COMPARE_SEQUENCES, 12, 31
CONDENSE_RESTRAINTS, 21, 96, 98, 99, 101
CONSENSUS_ALIGNMENT, 70
CONTACT_SHELL, 95, 106, 108, 109
COULOMB_SWITCH, 106, 108-110
COVALENT_CYS, 106, 108, 110
CURRENT_DIRECTORY, 83, 84
CUT_OVERHANGS, 70

DATA FILE, 85, 86
DEBUG_FUNCTION, 112
DEBUG_FUNCTION_CUTOFF, 112
DEFINE_INTEGER, 125
DEFINE_LOGICAL, 125
DEFINE_REAL, 125
DEFINE_STRING, 125
DEFINE_SYMMETRY, 97
DELETE_ALIGNMENT, 87
DELETE_RESTRAINT, 21, 101
DENDROGRAM, 12, 50, 71, 72, 81, 86
DESCRIBE, 71
DETAILED_DEBUGGING, 112
DEVIATION, 56, 58, 116
DIH_LIB_ONLY, 30, 93, 96
DIHEDRALS, 58
DIRECTORY, 34, 35, 39, 40, 66, 67, 72, 73, 75, 76, 85,
102, 105, 111, 125, 129
DISTANCE_ATOMS, 42, 80, 81
DISTANCE_RSR_MODEL, 93, 95
DO, 125, 128

130

DO_LOOPS, 120

DYNAMIC_ACCESS, 30, 106, 108, 109
DYNAMIC_COULOMB, 95, 106, 108, 109
DYNAMIC_FLAG, 29
DYNAMIC_LENNARD, 94, 106, 108, 109
DYNAMIC_MODELLER, 106, 108110
DYNAMIC_SPHERE, 94, 106, 108, 109

ELSE, 128, 129

END_SUBROUTINE, 125, 128

END_DO, 125, 128

END_SUBROUTINE, 128

ENERGY, 12, 20, 26, 27, 30, 41, 55, 56, 89, 97, 102,
106, 110, 112, 117, 135

ENERGY, 30

ENERGY_PROFILE, 28, 30

EQUILIBRATE, 108, 136

EQUILIBRATION, 110

ERROR_STATUS, 30, 129

evaluation, model, 12

EXCL_LOCAL, 93, 96, 106, 108, 109

EXPAND_ALIGNMENT, 31, 84, 117

EXPAND_CONTROL, 31, 84

EXTEND_HOT_SPOT, 56

EXTEND_HOT_SPOT, 55

FAST_SEARCH, 85, 86

FAST_SEARCH_CUTOFF, 85, 86

FILE, 30, 35, 39, 40, 45, 47, 48, 60, 61, 66, 67, 70, 73,
85, 87, 88, 102, 103, 105, 111, 127, 129

file naming, 34

file types, 36

FILE_ACCESS, 126, 127, 129

FILE_EXISTS, 127, 129

FILE_EXT, 34, 84, 87, 88, 126, 129

FILE_FORMAT, 102, 103

FILE_ID, 34, 84, 87, 88, 126, 129

FILE.STATUS, 126, 129

FINAL_MALIGN3D, 29, 117

FIT, 70, 75, 78, 80-84

FIT_ATOMS, 80-83

GAP_EXTENSION, 31, 53

GAP_PENALTIES_1D, 73-77, 85
GAP_PENALTIES 2D, 75

GAP_PENALTIES_3D, 81-84

GAP_POSITIONS, 53
GENERATE_TOPOLOGY, 93, 94
GENERATE_TOPOLOGY, 26, 40-42, 47, 58
GENERATE_TOPOLOGY, 116

GO_TO, 125, 127-129

HETATM_IO, 40-42, 47, 50, 70
HYDROGEN_IO, 40-42, 47, 50, 70

ID1, 34, 84, 126, 129
ID2, 34, 84, 126, 129

INDEX

ID_TABLE, 12, 29, 71-73
IDEAL_ENERGY1, 30

IF, 127, 128

INCLUDE, 35, 128
INCLUDE_FILE, 35, 128, 129
INHERIT _DISULFIDES, 30
INIT_VELOCITIES, 108, 110
INITIALIZEXYZ, 48

INPUT _WEIGHTS_FILE, 73, 75, 77
INQUIRE, 127

installation, 6
INTERSEGMENT, 93, 94
IO_UNIT, 126, 127, 129
IUPAC_MODEL, 57

KEEP_RESTRAINTS, 29

LABEL, 125, 127
LENNARD_JONES_SWITCH, 106, 108, 110
LENNARD_JONES_SWITCH[2], 109
LIBRARY_SCHEDULE, 104
LOCAL_ALIGNMENT, 73
LOCAL_ALIGNMENT, 73, 75, 76, 81, 83, 85

MAKE_SCHEDULE, 116

MAKE_TOPOLOGY_MODEL, 45

MAKE_REGION, 62

MAKE _RESTRAINTS, 21, 25, 26, 29, 30, 35, 38,
42, 53, 93, 99, 102, 103, 110, 116

MAKE_RESTRAINTS, 89

MAKE_SCHEDULE, 104, 105

MAKE_TOPOLOGY_MODEL, 39, 45, 46

MALIGN, 11, 30, 74, 76, 83, 86

MALIGN3D, 11, 29, 30, 35, 50, 74, 81, 83, 117

MALIGN3D, 11

MATRIX_FILE, 71

MATRIX_FILE, 71-73, 80, 81

MATRIX_OFFSET, 73-76, 81, 83, 85

MAX_GAPS_MATCH, 72

MAX_GAPS_MATCH, 72

MAX_ITERATIONS, 108, 110

MAX_LOOP_LENGTH, 53

MAXIMAL_DISTANCE, 93, 95

MD_RETURN, 108, 110

MD_TIME_STEP, 108, 110

MDT_LIB_FILE, 93, 96

method, 9

MIN_ATOM_SHIFT, 110

MIN_ATOM_SHIFTS, 108

MIN_LOOP_LENGTH, 87

MNCH?_LIB, 30

MNCH_LIB, 93

MODEL2_SEGMENT, 47

MODEL_FORMAT, 47, 48

MODEL_SEGMENT, 47, 61, 65

MODEL_TOPOLOGY, 24

INDEX

MODELLER_STATUS, 30, 34, 66, 67, 73-75, 77, 81,
83, 85, 108, 110, 111

MOLPDF, 106, 108, 110

MUTATE_MODEL, 44, 53

N_SCHEDULE, 105

NLOGN_USE, 106, 108, 110

NO_TER, 31, 48

NONBONDED_SEL_ATOMS, 29, 31, 93-96, 99, 108,
110

NORMALIZE, 30

NORMALIZE_PROFILE, 106, 107

NUMBER_LINES, 126

NUMBER_PLACES, 125-127, 129

OBJECTS, 28, 126, 129

OBJECTS_FILE, 126, 129

OFF_DIAGONAL, 73, 75, 76, 81, 83, 85

OPEN, 126

OPERATE, 28, 126

OPERATION, 126, 128, 129

OPTIMIZATION_METHOD, 108, 109

OPTIMIZE, 29, 41, 56, 94-96, 99, 107, 108, 110,
112, 117, 135

ORIENT_MODEL, 59

OUTPUT, 28, 30, 60, 80-86, 97, 106-109

OUTPUT_CONTROL, 34, 129

OUTPUT_DIRECTORY, 35, 45, 48, 61, 60-72, 87, 88,
103, 105, 126, 127, 129

OUTPUT_WEIGHTS_FILE, 73, 75, 77

OVERHANG, 70, 73, 75, 76, 81, 83, 85

PATCH, 20, 26, 39-41, 87

PATCH_DEFAULT, 40, 41

PATCH_DISULFIDES, 30

PATCH_SS_MODEL, 20, 30, 43

PATCH_SS_TEMPLATES, 19, 20, 30, 42, 44, 116

PICK_ATOMS, 21, 31, 38, 44, 53, 54, 78, 95, 110

PICK_ATOMS SET, 53

PICK_HOT_ATOMS, 41, 55, 90, 110, 135

PICK_HOT_CUTOFF, 55, 56

PICK_RESTRAINTS, 21, 29, 31, 53, 56, 97, 98,
104, 105, 117

primer, modeling, 11

PRINCIPAL COMPONENTS, 71

PRINCIPAL_COMPONENTS, 12, 73, 81

PROBE_RADIUS, 60

PROFILE_2D_PHYS, 30

program distribution, 5

program updates, 28

PSA_INTEGRATION_STEP, 60

RADII_FACTOR, 60, 93, 106, 108-110
RAND_SEED, 48, 56, 58, 62, 85, 108, 110
RANDOMIZE, 58

RANDOMIZE _XYZ, 53, 56, 104, 116
READ, 127

131

READ_ALIGNMENT, 116
READ_ALIGNMENT?2, 68
READ_ALIGNMENT, 30, 66-68, 70, 71, 81
READ_ALIGNMENT?2, 30, 67, 68
READ_ATOM_CLASS, 40
READ_MODEL, 38, 40, 41, 44, 47, 48, 58, 100, 116
READ_MODEL2, 47
READ_PARAMETERS, 30, 39
READ_RESTRAINTS, 21, 102, 103
READ_RESTYP_LIB, 25, 29, 39
READ_SCHEDULE, 104, 105
READ_TOPOLOGY, 39, 58
READ_WEIGHTS, 73, 75, 77

RECORD, 127, 129

REFERENCE_ATOM, 78
REFERENCE_DISTANCE, 78
REGION_SIZE, 62
REINDEX_RESTRAINTS, 101
RELATIVE_DIELECTRIC, 106, 108
REMOVE_GAPS, 66, 67, 85
RENAME_SEGMENTS, 52
RENUMBER_RESIDUES, 31, 52
RENUMBER_SEGMENTS, 31
REORDER_ATOMS, 48, 57
RES_TYPES, 53, 54

RESET, 126

RESIDUE_SPAN_RANGE, 95
RESIDUE_TYPE, 44
RESIDUE_GROUPING, 93

RESIDUE_IDS, 26, 41, 93, 95
RESIDUE_RANGE, 98, 99
RESIDUE_SPAN_RANGE, 29, 93-95, 106, 108, 110
RESIDUE_SPAN_SIGN, 29, 93-95, 110
RESIDUE_TYPE, 41, 44
RESTRAINT_PARAMETERS, 93, 95, 100
RESTRAINT_SEL_ATOMS, 29, 93, 94, 98, 99
RESTRAINT_STDEV, 93, 95
RESTRAINT_TYPE, 38, 93, 99
RESTRAINTS_FILTER, 98, 99
RESTYP_LIB_FILE, 29, 39

RESULT, 28, 126, 129

RETURN, 128

RMS_CUTOFFS, 78

RMS_CUTOFFS, 78, 80, 81
ROOT_NAME, 126

ROOT_NAME, 34, 84, 87, 88, 126, 129
ROTATE_DIHEDRALS, 53, 58
ROTATE_MODEL, 59
ROTATION_ANGLE, 59
ROTATION_AXIS, 59
ROTATION_MATRIX, 59

ROUTINE, 128, 129

RR_FILE, 72, 73, 75-77, 85, 87

SCHEDULE_SCALE, 104, 105
SCHEDULE_STEP, 106, 108, 109

132

script file, 14, 33
SEARCH_CHAINS_FILE, 85
SEARCH_CHAINS_FILE, 85, 86
SEARCH_CHAINS_LIST, 85
SEARCH_GROUP_LIST, 29, 85, 86
SEARCH_RANDOMIZATIONS, 85, 86
SEARCH_SORT, 85, 86
SEARCH_TOP_LIST, 85, 86
SEGMENT_CUTOFF, 87, 88
SEGMENT_GROWTH_C, 87
SEGMENT_GROWTH_N, 87
SEGMENT_IDS, 52

SEGMENT _MATCHING, 28, 31, 87
SEGMENT_REPORT, 87, 88
SEGMENT_SHIFT, 87
SEGMENT_SHIFTS, 87
SELECTION_FROM, 53, 54
SELECTION_MODE, 53-56
SELECTION_SEARCH, 53
SELECTION_SEGMENT, 31, 53, 65
SELECTION_SLAB, 53
SELECTION_STATUS, 53
SELECTION_STEP, 31

SEQUENCE, 40, 58
SEQUENCE_COMPARISON, 72, 73

SEQUENCE_COMPARISON, 29, 71, 72

SEQUENCE_SEARCH, 11, 29, 30, 85
SEQUENCE_TO_ALI, 44, 69
SET, 35, 41, 125

SET NLOGN_USE, 111
SHEET_H-BONDS, 95
SIGNIF_CUTOFF, 29, 30, 85, 86
SMOOTHING_WINDOW, 106, 107
SPHERE_CENTER, 53
SPHERE_RADIUS, 53
SPHERE_STDV, 106, 108
SPLINE_MIN_POINTS, 102
SPLINE_MIN_POINTS, 102
SPLINE_DX, 102
SPLINE_MIN_POINTS, 102
SPLINE_ON_SITE, 93
SPLINE_RANGE, 102
SPLINE_RESTRAINTS, 102
SPLINE_SELECT, 102

STOP, 125, 129

STOP_ON_ERROR, 34, 66, 67, 73, 75-77, 81, 83, 85,

108, 110, 129
STRING_ARGUMENTS, 126, 129
STRING._IF, 129
STRING_OPERATE, 126
SUBROUTINE, 128
SUPERPOSE, 29, 48, 78, 81
SUPERPOSE_REFINE, 78
SWAP_ATOMS_IN_RES, 29, 78
SWITCH_TRACE, 109, 111
SYMMETRY_WEIGHT, 97

SYSTEM, 127

TEMPERATURE, 108, 110
templates, 11, 12
THEN, 128, 129

INDEX

TOPOLOGY_MODEL, 39-45, 60, 93, 106, 108, 109

TRACE_.OUTPUT, 108, 109, 111
TRANSFER_RES_NUMB, 48
TRANSFER_RES_NUMB, 51

TRANSFER_XYZ, 28, 38, 41, 48, 50, 83, 116

TRANSLATION, 59
tutorial, 14

UPDATE_DYNAMIC, 106, 108-110

VARIABILITY_FILE, 72
VARIABLES, 125, 129
VIOL_REPORT_CUT, 55, 106, 107
VIOL_REPORT_CUT2, 106, 107

WATER_IO, 40-42, 47, 50, 70
WRITE, 28, 126

WRITE_ALIGNMENT, 28, 44, 70, 74, 75, 77, 83,

86
WRITE_ALL_ATOMS, 48

WRITE _DATA, 30, 60, 62
WRITE_FIT, 11, 83, 84
WRITE_MODEL, 48, 116, 117
WRITE_MODELS2, 48
WRITE_PDB_XREF, 61
WRITE_RESTRAINTS, 103, 116
WRITE_SCHEDULE, 104, 105
WRITE_TOP, 127
WRITE_TOPOLOGY_MODEL, 45
WRITE_WEIGHTS, 73, 75, 77
WRITE_WHOLE_PDB, 83, 84

