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If genetic stability is to be maintained, chromosomal

DNA must be precisely duplicated in each cell cycle.

In order to achieve this, the DNA polymerases and

other DNA processing enzymes working at the

replication fork must copy the template DNA with

high accuracy. It is also crucial that the replication

forks are assembled and disassembled correctly to

ensure that all the genome is replicated and that no

section of it is replicated more than once. This is a

particular problem for eukaryotes, whose very large

genomes mean that they must use thousands of

REPLICATION ORIGINS (which each initiate a bidirectional

pair of replication forks; see Glossary) to duplicate 

the entire genome in a reasonable period of time. 

The importance of strict cell-cycle regulation of

replication origins is outlined in Box 1. 

Here we review recent developments in our

understanding of the REPLICATION LICENSING SYSTEM,

which normally prevents replication origins from

firing (initiating a bidirectional pair of forks) more

than once in each cell cycle [1–5]. These recent results

suggest that not only is the licensing system the key

to ensuring precise chromosome duplication – but

that it also plays an important role in determining the

proliferative capacity of cells and has potentially

important implications for cancer diagnostics.

The replication licensing system

How does the cell know whether or not it has already

replicated a section of DNA in S phase? What ensures

the strict alternation of S phase and mitosis seen in

most cells? Recent work has made it clear that the

LICENSING of replication origins, achieved by their

loading of mini-chromosome-maintenance 2–7

proteins (Mcm2, 3, 4, 5, 6 and 7), provides crucial

information to the cell about whether the DNA has

been replicated in the current cell cycle [1–5]. The

Mcm2–7 polypeptides form a functional hexameric

complex [6] that comprises an important part of the

‘pre-replicative complex’ (PRE-RC) of replication

proteins found at replication origins during G1 phase.

On exit from metaphase, the replication licensing

system becomes activated, so that each origin

becomes loaded with Mcm2–7 (Fig. 1). The replication

licensing system (‘RLS’ in Fig. 1) remains active

throughout most of G1 but is inactivated as cells

approach S phase. This means that no further

Mcm2–7 can be loaded onto origins in S phase, G2 and

early mitosis. Only licensed origins containing

Mcm2–7 can initiate a pair of replication forks, and,

when initiation occurs at an origin, the bound

Mcm2–7 is displaced so that the origin cannot fire

again (Fig. 1). Mcm2–7 might function as the helicase

that unwinds DNA ahead of each replication fork [7],

which would explain their displacement from origin

DNA when forks are initiated. As a fail-safe

mechanism, it is also envisaged that, should an origin

be passively replicated by a replication fork

emanating from another origin, the Mcm2–7 bound to

it would also be displaced.

At least three other proteins are required for

origins to load Mcm2–7 and become licensed [4]

(Fig. 1b). The origin-recognition complex (ORC) first

binds to each replication origin and then recruits two

other proteins – Cdc6 (called Cdc18 in the fission

yeast Schizosaccharomyces pombe) and Cdt1 (also

known as RLF-B or double-parked) [2–4,8,9]. These

proteins in turn load Mcm2–7 complexes and

functionally license the origin. A crucial feature is

that, although ORC, Cdc6 and Cdt1 are all essential

for Mcm2–7 loading, none of them is subsequently
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CDK: cyclin-dependent kinase, consisting of a small kinase
subunit complexed with an activating cyclin subunit. Key
activator of cell-cycle transitions.
Licensing: the loading of functional Mcm2–7 hexamers onto
replication origins to enable them to support a single round of
replication.
Mcm2–7: six related minichromosome maintenance proteins
(Mcm2, 3, 4, 5, 6 and 7) found in a hexameric complex.
ORC: the origin-recognition complex, comprising six
polypeptides: Orc1, 2, 3, 4, 5 and 6.
Pre-RC: the pre-replicative complex of proteins bound to
replication origins during G1 but not G2 of the cell cycle.
Replication licensing system: the set of proteins required to
license replication origins.
Replication origin: a site on chromosomal DNA where a 
bidirectional pair of replication forks initiate.
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required to maintain the binding of Mcm2–7 to

origins [10–13]. Furthermore, it has been shown in

Xenopus (frog) that, once origin licensing is complete,

ORC and Cdc6 (and probably Cdt1 as well) are no

longer required for subsequent DNA replication

[11,12]. As discussed below, an important

consequence is that re-licensing of replicated DNA

can be prevented by inhibition or removal of ORC,

Cdc6 or Cdt1 once S phase has started, without

displacing functional Mcm2–7 at licensed origins.

Overall control of origin licensing by cyclin-dependent

kinases

Cyclin-dependent kinases (CDKs) – master regulators

of the cell cycle – are activated during late G1, where

they eventually induce cells to progress through

S phase, G2 and then mitosis; CDK activity is then

abolished during late mitosis. Significantly, the

licensing system is only active during late mitosis and

G1 phase (i.e. when CDK activity is low) (Fig. 1).

Experiments performed in S. pombe first showed

that, if CDK activity was temporarily inhibited in

cells at the G2 phase of the cell cycle, the cells would

re-replicate their DNA [14,15]. This suggests that

reloading of Mcm(2–7) occurs in these CDK-deficient

G2 cells. Subsequent work in a range of different

organisms has supported this model by showing that

CDKs can strongly inhibit the licensing system

[16–21]. However, high CDK levels do not displace

Mcm2–7 already bound to origins [11,12], thus

allowing the normal S phase program to occur in the

presence of S-phase-inducing CDKs (Fig. 1). It is

possible that different CDKs differ in their ability to

inhibit origin licensing, and CDKs normally active in

G1 to prepare cells for S phase might be less

repressive (see below).

Sometimes cells undergo unusual cell cycles where

the daughter cells acquire more DNA than was

present in their parent. This can occur as a

consequence of developmental signals (such as the

increase in chromosome number seen during cardiac

myocyte development) or as a consequence of some

insult to the cell (such as chemically induced

polyploidy). It is useful to separate these unusual cell

cycles into two distinct classes, shown schematically

in Fig. 2. The first class comprises endoreplication 

cell cycles (endocycles) [22], where periods of

alternating high and low CDK activity still occur. 

In endocycles, re-licensing of origins occurs when the

CDK activity present in G2 or mitotic cells is abolished

before cytokinesis has occurred. This G1 re-entry can

occur from G2, metaphase or anaphase. The

duplicated genomes are held in a single nucleus,

except in the case where nuclear division is completed

and cytokinesis alone is suppressed, resulting in the

formation of a binucleate cell. An example is the

endoreplication cycles occurring during Drosophila

development, where transient interruption of CDK

levels after DNA replication leads to cycles of

Mcm2–7 reloading and near-complete re-replication

of the DNA when CDK levels are restored [23–25].

Because endocycles drive complete S phases, the

resultant cells should have DNA contents that are

powers of 2 (2, 4, 8, 16, etc.) larger than the DNA

content in the starting cell. When mitotic CDK

activation is abolished by mutation of the cdc13

(cyclin B) gene in S. pombe, multiple complete rounds

of replication are seen and the cellular DNA content

approximates this power series [15].

The second way that DNA content might increase

is shown in the lower part of Fig. 2. In this case, the

cell re-licenses and re-initiates forks at one or more

replication origins before S phase has been completed

(origin re-firing). The levels of CDK during S phase do

not drop, but re-licensing occurs because the licensing

components (ORC, Cdc6, Cdt1 or Mcm2–7) cannot

respond to the inhibitory CDK signal. Because the

re-licensing and re-replication of one particular origin

would not be coordinated with any other origin, the

resultant cellular DNA content would not represent

any simple multiple of the original DNA content. 

If certain origins were more prone to re-firing, there

would be localized amplification of the DNA

surrounding them (much as is shown in the bottom

panel of Box 1). One of the best-studied examples of

this phenomenon in a physiological system occurs

within ovarian follicle cells during Drosophila
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A small segment of chromosomal DNA replicated from three origins is
shown during the different stages of the cell cycle (Fig. I). (a) The DNA is
under-replicated as a result of the failure of one of the origins to fire. 
As sister chromatids are separated during anaphase, the chromosome is
likely to be broken near the unreplicated section. (b) The successful
duplication of the chromosomal DNA. (c) Over-replication of the
chromosomal DNA as a result of one of the origins firing a second time in
S phase. The local duplication of DNA in the vicinity of the over-firing origin
is likely to represent an irreversible genetic change and might be resolved
to form a tandem duplication. The four stages of the cell cycle are shown at
the bottom of the figure.

Box 1. Ensuring precise chromosome replication.
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oogenesis, where certain genes are amplified to

ensure sufficient production of chorion proteins that

make up the eggshell. This occurs by the repeated

initiation of replication origins close to the amplified

genes in the presence of constant CDK levels [22,26].

CDK targets for preventing re-licensing of origins

Significant progress has recently been made in

understanding the mechanisms by which CDKs

inhibit replication licensing. Mounting evidence

suggests that CDKs are likely to block licensing by a

number of partially redundant mechanisms, which is

perhaps not surprising given the importance of

preventing over-replication of genomic DNA. Indeed,

it appears that all four proteins known to be involved

in origin licensing (ORC, Cdc6, Cdt1 and Mcm2–7)

can each be independently downregulated as a

consequence of CDK activity. The redundancy of CDK

control over licensing is dramatically demonstrated in

a recent paper by Nguyen et al. [5]. When CDK

inhibition of ORC, Cdc6 and Mcm2–7 was specifically

abrogated in the budding yeast Saccharomyces

cerevisiae, partial re-replication of the genome

occurred. This strongly supports the idea that the role

of CDKs in preventing re-replication of DNA is

primarily mediated by preventing re-licensing of

DNA. Abrogation of CDK regulation on individual

pairs of these proteins (ORC and Cdc6, ORC and

Mcm2–7, or Cdc6 and Mcm2–7) failed to induce

significant re-replication of DNA, thus demonstrating

the redundancy of the CDK control mechanisms.

Because re-replication was only partial when all three

of these CDK controls were abolished [5], there might

be further pathways preventing re-replication that

were still active in these cells. It is also consistent

with re-replication being a result of ‘origin re-firing’

(Fig. 2) rather than arising from CDK oscillation.

Precisely how do CDKs block origin licensing? 

As discussed in more detail below, each of the four

origin proteins (ORC, Cdc6, Cdt1 and Mcm2–7) can be

independently regulated by CDKs. Figure 3

summarizes these different mechanisms. This is 

not a complete list, and further inhibitory pathways

might well be discovered. One striking feature 

shown in Fig. 3 is that, although the four origin

proteins are highly conserved throughout the

eukaryotic kingdom, the way that they are regulated

by CDKs differs significantly. The regulation of 

these four different proteins by CDKs is discussed 

in turn.

CDK regulation of ORC
In S. cerevisiae, the Orc2 subunit of ORC is

phosphorylated by CDKs in late G1, S phase, G2 and

mitosis [5]. When the DNA encoding these

phosphorylation sites was genetically removed from

the ORC2 gene, cells could undergo partial re-

replication under conditions where Cdc6 and Mcm2–7

regulation by CDKs had been abrogated. The

phosphorylation of Orc2 during the later stages of the

cell cycle appears to be highly conserved throughout

eukaryotic evolution and has also been reported in

S. pombe and Xenopus. Phosphorylation of the

S. pombe Orc2 homolog (Orp2) by CDK has recently

been shown to regulate activity of the ORC complex

as deletion of CDK phosphorylation sites enhances

the re-replication seen when the S. pombe Cdc6

homolog (Cdc18) is overexpressed [27]. The situation

in metazoans appears somewhat more complex. 

In Xenopus, exposure of chromatin to high CDK levels

(such as occur during mitosis) can release ORC from

chromatin [11,12], and this appears to play a small

but significant role in preventing origin re-licensing

[8]. Although ORC appears to bind to DNA with

increased affinity in early G1 when CDK activity is

low, binding then weakens later in the cell cycle. This

decrease in binding affinity of ORC to DNA was not as

a result of increases in CDK activity but arose as a

consequence of origin licensing (‘licensing-dependent

origin inactivation’), a process that might help to

prevent re-licensing of origins later in the cell cycle

[12]. In mammalian cells, there is also evidence that

the Orc1 subunit of ORC can be released from DNA

during S phase and mitosis, leaving Orc2 still bound

[28,29]. This effect is likely to be a result of the high

CDK levels present at this stage.

CDK regulation of Cdc6
In yeasts, the abundance of Cdc6 is tightly controlled

during the cell-division cycle. CDC6 transcription

peaks during late mitosis and G1 [30–32], with

Review

Fig. 1. Replication licensing and cyclin-dependent kinase (CDK) activity through the cell cycle. 
(a) A small segment of chromosomal DNA is depicted at different stages of the cell cycle, with bound
(red hexagons) or unbound (blue hexagons) Mcm2–7 (M). The activity of the replication licensing
system (RLS, green) and CDKs (pink) at the different stages are shown in the central circle. (b) Diagram
depicting the sequence of events that occurs as each origin binds to Mcm2–7 and becomes licensed [4].
The loading of ORC (purple), Cdt1 (yellow) and Cdc6 (green) and then Mcm2–7 (M, red) is shown. 
At some time after licensing is complete, ORC, Cdc6 and Cdt1 become inactivated, as indicated by
grey shading.
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transcription being under the control of the

CDK-dependent transcription factor SWI4/Cdc10

[31,33]. Protein levels are also controlled by 

cell-cycle-specific degradation, probably involving two

or more different pathways [34,35] but again

controlled by CDK activity [34–36]. To abolish both

regulatory mechanisms and to permit DNA

re-replication in S. cerevisiae, Nguyen et al. [5]

expressed from a constitutively active promoter a

truncated form of Cdc6 that is resistant to 

cell-cycle-specific degradation.

In vertebrate cells, the regulation of Cdc6 is less

well understood. Cdc6 appears to be present

throughout the vertebrate cell cycle. Although 

cell-cycle-dependent degradation of Cdc6 protein is

seen, significant amounts of chromatin-bound Cdc6

are observed during G1, S and G2 phases [37,38].

Much of the soluble Cdc6 protein, however, is

translocated from the nucleus to the cytoplasm when

CDKs are activated in late G1 phase, thus preventing

it from further interaction with replication origins

[39–41]. One possible explanation for these

apparently contradictory results is that the

chromatin-bound form of Cdc6 seen in S and G2

phases is not competent to support origin licensing

but might play another role in cell-cycle regulation.

CDK regulation of Cdt1
First identified in S. pombe as a gene induced by the

CDK-dependent transcription factor Cdc10, Cdt1

mRNA and protein levels peak in late mitosis and

early G1 [42–44]. In HeLa cells, levels of Cdt1 also

peak during G1 [43,45]. A Cdt1 homolog has not yet

been identified in S. cerevisiae. Therefore, it is

possible that re-replication was only partial in

S. cerevisiae cells containing unregulated ORC, 

Cdc6 and Mcm2–7 because Cdt1 activity was being

inhibited by CDKs [5].

Vertebrate cells are also able to control Cdt1

activity through a specific inhibitor called geminin

[8,45,46]; no geminin homolog has yet been identified

in yeast. In metaphase-arrested Xenopus eggs,

geminin inhibition of Cdt1 is the major pathway for

prevention of origin licensing [8]. The abundance of

geminin, however, has been shown to be indirectly

regulated by CDKs. Geminin is specifically degraded

during late mitosis by the anaphase-promoting

complex (APC/C) that is also responsible for

degrading cyclins and which itself is regulated by

CDKs [46]. In mammalian cells, geminin levels

remain low throughout G1 (when the APC/C is active)

and levels rise again during S phase and G2, when the

APC/C becomes inactivated and CDK levels rise

[45,46]. APC/C regulation has been suggested as a

means by which the specialized endocycles of

Drosophila, mentioned above, are controlled [22].

CDK regulation of Mcm2–7
In S. cerevisiae, Mcm2–7 proteins are present in the

nucleoplasm only during late mitosis and early G1.

Soluble Mcm2–7 proteins are excluded from nuclei at

other stages of the cell cycle, although the origin-

bound Mcm2–7 hexamer is still seen in S phase nuclei

[47–49]. The nuclear exclusion of Mcm2–7 is

dependent on the presence of CDK activity. Exclusion

can be mediated by the S. cerevisiae G1 cyclins (Clns)

as well as the B-type cyclins (Clbs) [48], but the

B-type cyclins might be more effective [49]. This

nuclear exclusion, which formed a major part of the

original licensing factor model [1], is an effective way

of preventing re-replication of DNA as it separates

the license (Mcm2–7) from its substrate (DNA). 

There is little evidence, however, that Mcm2–7

activity is regulated by subcellular localization in

other organisms. Mcm2–7 proteins have been

reported to have a constitutively nuclear localization

in S. pombe, Drosophila, Xenopus and a range of

mammalian cells. Indeed, there is little evidence that

Mcm2–7 proteins are negatively regulated late in the

cell cycle of other organisms (e.g. Ref. [19]). However,

the possibility of undiscovered modes of Mcm2–7

regulation (such as controlling its assembly into an

active hexamer [6]) is still open.

Licensing and the definition of the proliferative state

Only a small proportion of the cells that make up a

multicellular organism are likely to be actively
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engaged in the cell-division cycle at any one time.

Some non-proliferating cells will have permanently

withdrawn from the cell cycle as a result of terminal

differentiation or senescence. Others can be 

easily stimulated to divide again by appropriate

environmental signals such as growth factors; these

cells are said to be ‘quiescent’ or in the G0 phase of the

cell cycle. Evidence from a range of different

organisms and cell types suggests that both G0 and

permanently arrested cells have lost Mcm2–7

proteins and are functionally unlicensed [50–56]. 

Not only is the Mcm2–7 hexamer removed from DNA

as cells pass into G0, but the unbound protein is also

lost from the cells. A similar reduction in Cdc6 protein

is seen in G0 and permanently arrested cells

[53,54,56–58]. ORC levels, however, seem to 

remain high on progression into quiescence [52,53].

The persistence of ORC in non-proliferating cells is

consistent with it having a function in these cells 

that is independent of DNA replication, such as

transcriptional silencing [59].

A recent study of Mcm2–7 proteins in a variety of

human tissues by Stoeber et al. [56] consolidates

these results, and suggests that the removal of the

replication license is a common pathway by which

proliferation is restrained. An example is shown in

Fig. 4 where a section of human colon has been

immunostained for Mcm2. The terminally

differentiated (non-proliferating) cells at the top 

of the crypt contain virtually no Mcm2. At the base of

the crypts are the stem cells, which, although

possessing a high capacity for self-renewal, divide

relatively infrequently. These stem cells contain

intermediate levels of Mcm2, consistent with them

being at different points through the G1–G0

transition. Between the stem cells and the terminally

differentiated cells are the transit amplifying cells

that are actively proliferating. These proliferating

cells stain the most strongly for Mcm2.

The correlation between entry into G0 and

terminal differentiation with loss of Mcm2–7 is shown

schematically in Fig. 5. During late mitosis and early

G1, replication origins become licensed, and they stay

licensed throughout the G1 period. From G1, cells

have the choice to either enter S phase or withdraw

from the cell cycle. Entry into S phase is driven by

rising CDK activity, which leads to the initiation of

DNA replication and subsequent removal of 

Mcm2–7. Withdrawal from the cell cycle is

accompanied by the gradual loss of Mcm2–7 

in the absence of CDK activity or DNA replication. 

On re-entry into the cell cycle from G0, origins are

re-licensed and only then can CDK activity induce

entry into S phase [53]. The licensing pathway 

that is followed during the G0–G1 transition might 

be regulated differently from the licensing pathway

that occurs on exit from mitosis. In particular, 

many of the pre-RC genes involved in licensing

appear to have binding sites for the E2F transcription

factor, which is active during late G1 or upon exit 

from G0 [9,51,57,60–65]. Full E2F activity is

dependent on Cdk4/6–cyclin D and Cdk2–cyclin E,

suggesting that, at the levels necessary to activate

E2F, these particular CDKs might not inhibit

licensing (Fig. 5).
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Detection of Mcm2–7 is therefore a powerful way of

assessing the proliferative potential of cells. Because

there is currently no formal way of distinguishing G1

from G0 cells, we propose that the description of cells

being in G1 should be limited only to cells with licensed

origins. The G0 state can then be defined thus: a

reversible withdrawal from the cell cycle characterized

by unlicensed origins and the absence of CDK activity.

We believe that this definition would be useful as it has

clear functional significance in distinguishing G0 or

differentiated cells that are not proliferating from 

G1 cells engaged in the cell-division cycle. This

distinction, between cells containing Mcm2–7 and

cells lacking it, has potential as a diagnostic marker

for early cancer stages – that is, cancers with a high

proportion of proliferating cells (high growth fraction)

should stain strongly for Mcm2–7 [54,56,66,67]. This

powerful new approach has already given promising

results in the diagnosis of cervical [54], urothelial [66]

and bronchial cancers [67].

In their survey of Mcm2–7 levels in different

human tissues, Stoeber et al. [56] reported that the

glandular epithelial cells of the breast showed an

interesting exception to the correlation between

Mcm2–7 presence and active proliferation. In breast

cells from non-pregnant and non-lactating women, a

large percentage of glandular epithelial cells (47–65%)

expressed Mcm2–7 while only a small percentage

(~6%) showed signs of proliferation. During

pregnancy, when these cells proliferate rapidly, almost

of all them contained Mcm2–7, but expression plunged

to <3% during lactation when the glandular epithelial

cells undergo differentiation to the secretory state.

The persistence of Mcm2–7 in non-proliferating breast

cells might be an evolutionary relic from times when

women spent most of their fertile years either

pregnant or lactating and when it was therefore

unnecessary for these cells to be able to withdraw from

the G1 state. An important question raised by this

finding is whether licensed but slowly proliferating

cells such as these have a higher risk of undergoing

malignant transformation. Because the lack of origin

licensing could be an important mechanism

restraining the proliferation of G0 cells, it is possible

that failure to downregulate the licensing system 

(as in these breast cells) might make transition 

to uncontrolled proliferation significantly easier to

achieve. These new observations could therefore have

important implications for the pathogenesis of breast

cancer and urgently demand further study.

Concluding remarks

The results discussed in this review show that the

replication licensing system not only plays a central

role in ensuring precise chromosome duplication in

each cell cycle, but it also plays an important role in

downregulating the proliferative capacity of cells

when they withdraw from the cell cycle. This

conclusion appears to have important practical

implications for cancer diagnosis, which we expect to

be consolidated by future work.
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Fig. 5. Entry and exit of cycling cells into quiescence and terminal differentiation. On the left is a
cartoon of cells passing through four phases of the cell-division cycle. The presence of licensed
origins is shown in red (inner circle), and the presence of active cyclin-dependent kinases (CDKs) is
shown in green (outer circle). When cells pass from G1 into G0 or terminally differentiate, origins
become unlicensed. When G0 cells are stimulated to re-enter G1, their origins become re-licensed. It is
currently unclear whether CDK reactivation of the E2F transcription system is required for this re-
licensing to occur.
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