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ABSTRACT

Correct orthology assignment is a critical pre-
requisite of numerous comparative genomics pro-
cedures, such as function prediction, construction
of phylogenetic species trees and genome rearran-
gement analysis. We present an algorithm for the
detection of non-orthologs that arise by mistake
in current orthology classification methods based
on genome-specific best hits, such as the COGs
database. The algorithm works with pairwise
distance estimates, rather than computationally
expensive and error-prone tree-building methods.
The accuracy of the algorithm is evaluated through
verification of the distribution of predicted cases,
case-by-case phylogenetic analysis and compari-
sons with predictions from other projects using
independent methods. Our results show that a very
significant fraction of the COG groups include
non-orthologs: using conservative parameters, the
algorithm detects non-orthology in a third of all
COG groups. Consequently, sequence analysis
sensitive to correct orthology assignments will
greatly benefit from these findings.

INTRODUCTION

The identification of orthologous genes is a central problem
in bioinformatics. Orthologs are genes that evolve from a
common ancestor through speciation events, as opposed to
paralogs, that result from gene duplication (1). Discriminat-
ing orthologs from paralogs is an important, but non-trivial
task. It is important, because function conservation is consid-
erably higher among orthologs (2), and also because only
orthologs reflect the history of their species (1), meaning
that phylogeny inferences must be based on orthologs. It is
non-trivial because this distinction requires precise estimates
of evolutionary distances from data that are often noisy.

Other complications include gene deletion, variations in
evolutionary rates, lateral gene transfer (LGT), or simply
the fact that orthology and paralogy are non-transitive rela-
tions, meaning that the relation of every pair of genes must
be analyzed separately.

So far, several projects have addressed this problem sys-
tematically. Of those, the COGs database (3,4) is by far the
best established, probably due to its early inception, its
wide scope, its reasonable performance and its presence on
the NCBI website. The significance of COG in the commu-
nity is reflected by hundreds of references in scientific
articles. Even more importantly, most current initiatives for
the identification of orthologs use ideas derived from the
methodology of COG, in particular the idea of genome-
specific best hit (5–7). Of all those projects depending either
on the methods or results from COG, few question the
accuracy of them.

In its last accessible release (2003), the COGs database
groups 138 458 proteins from 66 prokaryotes into 4873
groups that consist of orthologs and in-paralogs. The term
in-paralog was coined by Remm and coworkers (6) and
describes in this context paralogs inside the same species
(‘trivial paralogs’), as opposed to out-paralogs that result
from a duplication event prior to the last speciation event.
[Strictly speaking, in/out-paralogy is a relation defined over
two sequences and a speciation event of reference. When
that event is omitted, it is here the last speciation event that
is implied.] The inclusion of in-paralogs is usually justified
by the fact that such sequences are orthologous to every
other sequence within their group. Consequently, the relation
of every pair of sequences inside the same COG is unambig-
uous: pairs of sequences from the same species are paralogs,
otherwise, they are expected to be orthologous. The construc-
tion of COG groups is based on the fact that orthologous
genes almost always have a higher level of sequence conser-
vation than paralogs. Hence, genome-specific best hits
(‘BeTs’) are likely to be formed between orthologs. Yet, if
the corresponding ortholog is missing, a BeT might link
paralogous sequences. That problem is partly taken care of
by COG’s approach: BeTs are only grouped when they
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form triangles, and triangles are merged only when they have
a common side. However, if more than one species have lost
the corresponding ortholog, the construction over triangles
will not suffice to prevent paralogs from being clustered
together. This scenario is far from being unlikely, because
losses occurring before speciation events get replicated, and
therefore the problem becomes very significant as more
species and strains are included for analysis. In fact, simple
situations, such as the one illustrated on Figure 1 are
sufficient to have paralogs clustered together. It is then up
to the human curation step at the end of the COG building
process (3) to resolve all such cases.

The difficulty caused by a single missing ortholog can be
easily avoided by requiring that all BeTs be symmetrical,
which is what most other projects do. However, if the
corresponding ortholog is missing in both genomes, even a
symmetrical BeT will link paralogs. Therefore, BeTs, even
symmetrical, are not necessarily linking orthologs.

This problem could be solved through phylogenetic
analysis of the relevant gene families, in particular tree
reconciliation (8), but this procedure is not yet practical in
large-scale, automated contexts (2). In the following, we
present an algorithm that detects non-orthology without the
need of gene tree construction, then report its application
on the last version of the COGs database. The algorithm
was developed in the context of our own orthology classifica-
tion project OMA (9), in which it is used to verify every pre-
dicted orthologous relation.

MATERIALS AND METHODS

The algorithm presented here is designed to detect non-trivial
paralogous relations within groups of orthologs such as COG
groups. Knowing that a paralogous relation within a group is
likely to be caused by the loss of the corresponding ortholog
in both species, the algorithm looks for a third-party species,
which we call the ‘witness of non-orthology’, in which both
corresponding orthologs are present (Figure 2). Under the
assumptions of good and complete data, and similar
evolutionary rates among orthologs, such a situation is
characterized by the following three requirements on the
evolutionary distances: (i) In Z, z3 is the closest protein to x1

and z4 is the closest protein to y2. (ii) The pair (x1, z3) must

be significantly closer than (x1, z4), and conversely, (y2, z4),
must be significantly closer than (y2, z3), That excludes
cases where z3 and z4 are in-paralogs (Figure 3, left), because
for in-paralogs to fulfill those conditions, convergent evolu-
tion at the sequence level would be required, a phenomenon
that is so unlikely that we ignore it (10). (iii) The distance
between (x1, z4), must be similar to (y2, z3). That excludes
cases where X (respectively Y) speciated before the duplica-
tion event, in which case x1 (respectively y2) is orthologous
to all three other genes (Figure 3, right).

We finish this overview of the algorithm by considering
the impact of LGT and gene fusion/fission. Clearly, the algo-
rithm presented here was not designed to detect LGT events
between x1 and y2, an interesting problem in itself that
remains largely unsolved. More importantly here, an LGT
in a third-party species Z can lead to a situation where Z
wrongly appears to be witness of non-orthology: consider
three orthologous proteins x1, y2 and z3 in three species X,
Y and Z. At some point, Z acquires through LGT a member
of that orthologous family, which we now refer to as z4. Z
keeps both copies z3 and z4. Furthermore, Z happens to be
closer to X than Y, while the donor of z4 is closer to Y
than X. This situation leads to a misclassification by our
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Figure 1. A simple evolutionary scenario under which the COG algorithm groups paralogous sequences.

Figure 2. Suitable case of a witness. A duplication occurred before all
speciations and Z is a witness of the non-orthology between the sequences x1

and y2.
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algorithm. Although such cases cannot be ruled out, we did
not encounter any among the numerous case-by-case analysis
performed on the results. It could be that orthologous gene
displacement of z3 by z4 through homologous recombination
is a much more likely scenario, and besides, the frequency of
LGT appears to be higher among closely related species (11).
As for gene fusion or gene fission, the units for amino acid
sequence analysis are no longer proteins but domains. Even
though the analysis of homologous domains from distinct
proteins is scientifically meaningful, our analysis remains at
the level of entire proteins to simplify matters.

Note that the complications caused by LGT events and,
probably to a lesser extent, by gene fusion/fission are not
specific to our method and pose challenges to other
approaches as well, in particular tree reconciliation.

Input data

The algorithm uses two inputs: the COGs database and pair-
wise sequence alignments between all proteins involved in
the analysis. As introduced above, the orthology of two
sequences is verified through an exhaustive search of the cor-
responding sequences in complete, third-party genome.
Therefore, a large number of genomes is desirable. However,
since the relation between every pair of sequence is needed,
such searches require the computation of a very large number
of pairwise alignments. For practical reasons, all results
presented here use results from the Smith–Waterman (12)
all-against-all protein alignments precomputed in the scope
of the OMA project (9).

For each alignment, a PAM distance estimate and the cor-
responding variance is computed using maximum likelihood
and numeric integration (13,14).

Comparison of evolutionary distances

The algorithm uses evolutionary distances to detect paralogs.
However, the distances estimates are subject to perturbation,
which must be taken into account when comparing them.
Therefore, assuming that errors are normally distributed,
the difference D(d1, d2) of two distances d1, d2 has expected
value:

E½Dðd1‚d2Þ� ¼ Eðd1Þ � Eðd2Þ

with variance

s2½Dðd1‚d2Þ� ¼ s2ðd1Þ þ s2ðd2Þ � 2Covðd1‚d2Þ

If the two distances are independent, the covariance term
disappears and the variance of the difference can be obtained
directly from the individual variances. But more often
than not, d1 and d2 involve a common protein and are
therefore not independent, meaning that not taking
the covariance into account overestimates the error. We
have developed a method to approximate the covariance of
two evolutionary distances, which will be the subject of a
separate article.

Algorithm

The algorithm goes through each COG group, and verifies
inside each of them that every two genes x1, y2 coming
from different species have a significant alignment, and are
indeed orthologs. Alignments are considered significant if
the score is above 130 (47 bits, which typically corresponds
to an E-value around 2e�6) and the length of the alignment
not <50% of the smallest sequence. The verification of orthol-
ogy is performed through the search, in each third-party gen-
ome Z, of two genes z3 and z4 that fulfill the three conditions
(i–iii) presented at the beginning of this section:

8zi 6¼ z3 : Dðx1z3‚x1ziÞ < k ·s½Dðx1z3‚x1ziÞ�
8zj 6¼ z4 : Dðy2z4‚y2zjÞ < k ·s½Dðy2z4‚y2zjÞ�

1

Dðx1z4‚x1z3Þ > k ·s½Dðx1z4‚x1z3Þ�
Dðy2z3‚y2z4Þ > k ·s½Dðy2z3‚y2z4Þ�

2

j Dðx1z4‚y2z3Þ j < k ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s2ðx1z4Þ þ s2ðy2z3Þ�

p
‚ 3

where k is the confidence level, which we set to 1.96. If the
quartet (x1, y2, z3, z4), fulfills all three conditions, there is
enough evidence to consider x1, y2 paralogs. The algorithm
was implemented in the programming environment
Darwin (15).

A note about parameter choice. As mentioned previously,
the classification of protein pairs in orthologs and non-
orthologs can be very difficult or even impossible, especially
when a speciation event immediately follows a duplication
event, or in the situation of frequent gene gain and gene

Figure 3. Unsuitable cases of witnesses. To the left, duplication occurred only in Z, and therefore z3 and z4 are in-paralogs with respect to (X, Y) and cannot act as
witness of non-orthology. To the right, X speciated before the duplication event. Hence, x1 is orthologous to all three other proteins and cannot act as witness of
non-orthology.
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loss, as it is observed in certain groups of proteins, such as
metabolic enzymes. Here, the choice of k ¼ 1.96 standard
deviations was established empirically such that the false-
positive rate (orthologs misclassified as non-orthologs) is
much smaller than the false-negatives rate (missed non-
orthologs). In other words, we expect that our algorithm
reports only clear-cut cases of paralogy.

Phylogenetic analysis

To verify individual cases reported by the algorithm, phylo-
genetic trees were constructed using independent, common
software packages, as follows: sequences were aligned
using Muscle (16) and ClustalW (17). Whenever they
differed, the one that seemed more likely was selected.
Short sequences, suspicious regions and most gap-containing
columns removed. Distance matrices (JTT, gamma) gener-
ated with protdist (18) were used to construct phylogenetic
trees using neighbor (18). Clusters of interest were selected
for detailed analysis. Alignments of the selected data were
performed using Tcoffee (19) and the result subsequently
modified as described above, and considering the Tcoffee
CORE (consistency of overall residue evaluation) values for
the alignment. Information on the stability of the tree
topology was assessed building an extended majority rule
consensus tree using consense (18) from BIONJ (20) searches
performed on 1000 bootstrap replicates, which were con-
structed with seqboot (18). Protein trees of the data subset
were constructed using the Bayesian tree-building method
MrBayes (21) (JTT; invgamma-4; 1 000 000 generations).
The trees were rooted using an outgroup whenever a suitable
ancient paralog could be found. Note that since the analysis
attempts at clustering homologs into clans, and not at pre-
dicting their hierarchical order, placement of the root is not
critical here.

Validation

The performances of the algorithm were evaluated using the
HAMAP database (22), a collection of orthologous microbial
protein families generated manually by expert curators in the
Swiss–Prot group. The database was retrieved on November
23, 2005. Proteins from the 99 most represented species also
present in our OMA project were used in the analysis: of all
29 245 proteins, there were 21 831 proteins (75.6%), grouped
in 1189 orthologous families. That yielded 309 829 pairwise
relations to be verified by our procedure.

The algorithm classified 279 568 (90.2%) relations as
orthologous and 9420 (3.0%) as paralogous. The remaining
20 841 (6.7%) relations had alignments below our signific-
ance threshold and could therefore not be processed. The
accuracy of the algorithm, in particular its very low false-
positive rate was confirmed by following observations:

First, paralogy is often reflected by different Swiss–Prot ID
names (e.g. GREA/GREB) (23). From the 9420 predicted
paralogs, only 2728 (29.0%) of them have identical ID
names. Second, the distribution of the paralogs among
HAMAP families was investigated: all 9420 cases of
paralogy found by the algorithm are concentrated in only
150 (12.6%) of the 1189 HAMAP families. This is consistent
with the fact that the inclusion of just one paralogous protein
into an orthologous family is likely to result in several

paralogous relations inside that family. And indeed, in all
except 8 of these 150 families, more than one paralogous
pair was detected. Third, these 8 improbable cases were
inspected individually using phylogenetic analysis, which
confirmed that they are bona fide paralogs (possibly xeno-
logs). Fourth, the predicted cases of paralogy were compared
to the gene trees over HAMAP families built by the group of
Laurent Duret (http://pbil.univ-lyon1.fr/help/HAMAP.html),
in a similar way as HOBACGEN (24). 7217 predicted
cases could be mapped to those trees. In 6418 (88.9%)
instances, paralogy was confirmed by the trees, a remarkably
high level of consistency considering that the two methods
are very different. As for the conflicting 799 cases, which
are distributed among 51 families, we believe that most of
them are caused by inaccuracies on the gene trees, which
are constructed using a variant of Neighbor Joining on
observed divergence, a rather crude measure of evolutionary
distance.

RESULTS AND DISCUSSION

The algorithm was run on the current release of the COGs
database (4) (http://www.biomedcentral.com/1471–2105/4/
41). We used the precomputed all-against-all results from
107 complete genomes, of which 52 are represented in
COGs, whereas the remaining 55 genomes were only used
as potential witnesses of non-orthology. [The complete list
is available in the Supplementary Data.] From all 4654
COGs, there is a total of 5 537 713 pairwise relations. Pairs
between proteins from the same species (484 043) were not
considered further. Additionaly, 2 733 371 relations involve
at least one protein from a species outside our set of 107
genomes. Consequently, the following results were obtained
through the verification of 2 320 199 relations, 45.9% of all
potential orthologous relations.

The results are presented in Table 1. Surprisingly, 44% of
the relations had alignment scores below our significance
threshold of 130, which corresponds to an E-value of about
2e�6, and could therefore not be verified. This implies that
an important fraction of relations within COGs cannot be,
on the basis of pairwise alignments, reliably considered
homologous.

The other result is the significant proportion of non-
orthologous relations found by the algorithm, more than a
quarter of the pairs that could be verified. They are distributed
among about a third of all COGs. The list of such groups,
along with all detected non-orthology cases are available in
the Supplementary Data.

If we require the presence of at least two witnesses of non-
orthology for a pair to be considered non-orthologous, the

Table 1. Results of the algorithm on the COGs database

# %

Pairs with score below threshold, not tested 1 021 764 44.0
Pairs with score above threshold 1 298 435 66.0
Non-orthologous pairs 360 856 27.8
Orthologous pairs 937 579 72.2
COG groups with non-orthology 1604 34.5
COG groups without non-orthology 3050 65.5
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algorithm still finds 251 391 (19.4%) such pairs within 1146
(24.6%) COGs. When removing the sequence with the most
non-orthologous relations from each COG group, the
total number of non-orthologous pairs decreases by only
24 868 (1.9%).

The majority (70%) of the groups predominantly non-
orthologs are involved in metabolic processes, according to
the functional description of the COGs database, although
they only constitute a minority of all COGs. In contrast,
groups involved in information storage and processing (8%)
or cellular processing and signaling (11%) include less
frequently non-orthologs. The remainder 11% are poorly
characterized proteins. This result is in agreement with
previous studies, which state that in prokaryotes, metabolic
functions are under high evolutionary pressure from changing
environments (25).

Phylogenetic analysis of selected COG groups

The presence of non-orthology in some COG groups is hardly
a surprise and was in fact recently acknowledged by Koonin,
coauthor of COG, in a review article (2). What is surprising
here is rather the extent of non-orthology detected by the
algorithm. That prompted us to verify, in addition to the
validation work reported in the previous section, a number
of our predictions using detailed phylogenetic analysis. In
this section, we report the conclusion of such analysis on
three COGs, for which we could build Bayesian likelihood
trees of high confidence, confirmed by consensus NJ trees
with high bootstrap values. Clan assignments were made
based on those trees, and considering lineage and function,
whenever reliable annotations could be found. We strongly
expect that pairs of proteins across clans be non-orthologous,
and use these results to evaluate the accuracy of the
predictions made by the algorithm.

COG0508 consists of complex-forming acyltransferases
that are composed of an N-terminal biotin or lipoic acid
attachment domain, a central protein–protein interaction
domain, followed by the catalytic 2-oxoacid dehydrogenases
acyltransferase domain. The phylogenetic analysis of roughly
half of the proteobacterial sequence data from COG0508
suggests the existence of at least four distinct subgroups
(see Figure 4): clan 1 is formed by sequences from gamma-
proteobacteria, including the dihydrolipoyllysine-residue
acetyltransferase component of the pyruvate dehydrogenase
complex (EC 2.3.1.12) (AceF) from Escherichia coli. Clan
2 consists of proteins highly similar to the Bacillus subtilis
lipoamide acyltransferase component of the branched-chain
alpha-keto acid dehydrogenase complex (EC 2.3.1.168). All
sequences in clan 2 are alphaproteobacterial, except for
Pseudomonas aeruginosa proteins, which are found in both
clan 1 and clan 2. As mentioned in section 2, such situation
could arise through lateral gene transfer from an alphaproteo-
bacteria to P.aeruginosa. If that was the case, there would be
strong evidence that clans 1 and 2 should be merged. How-
ever, in the present case, it is possible to populate both
clans with additional sequences from more distant species
(data not shown), legitimating the separation in two clans.
Additionally, the long distance between the two clans and
the distinct function of at least one family member of each
subgroup also supports this conclusion. Clan 3 includes the

dihydrolipoyllysine-residue succinyltransferase component
of 2-oxoglutarate dehydrogenase complex (EC 2.3.1.61)
(SucB) of E.coli. Note that clan 3 includes two protein
sequences of Rhizobium meliloti, but those are clearly ancient
duplicates, and thus sequence 3b is likely to form yet a
separate clan on its own. Finally clan 4 is formed by a
presumably further dehydrogenase component from alpha-
proteobacteria. The algorithm predicted 382 cases of non-
orthologous relations within the sequences considered here.
An extract of the result list is given in Table 2 (the full list

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Unrooted phylogenetic consensus tree constructed from a Bayesian
analysis of a subgroup from COG0508. Posterior probabilities are indicated to
the right of the nodes and clan-supporting bootstrap values are indicated
below the probability value. Predicted clans are indicated by the vertical bars
on the right side. The leaf labels correspond to the following COG identifiers:
Agrobacterium tumefaciens (2: AGl2719, 3: AGc4775, 4: AGc2641),
Brucella melitensis (2: BMEII0746, 3: BMEI0141, 4: BMEI0856), Buchnera
sp. (1: BU206, 3: BU303), E.coli K12 (COG identifier corresponds to the
gene name: aceF, sucB), E.coli H7 (1: ECs0119, 3: ECs0752), Haemophilus
influenzae (1: HI1232, 3: HI1661), Neisseria meningitidis (1: NMB1342, 3:
NMB0956), Pasteurella multocida (1: PM0894, 3: PM0278), Pseudomonas
aeruginosa (1: PA5016, 2: PA2249, 3: PA1586), Rhizobium loti (2: mll4471,
3: mll4300, 4a: mlr0385, 4b: mll3627), Rhizobium meliloti (2: SMc03203,
3a: SMc02483, 3b: SMb20019, 4: SMc01032), Rickettsia conorii
(3: RC0226, 4: RC0764), Rickettsia prowazekii (3: RP179, 4: RP530), Vibrio
cholerae (1: VC2413, 3: VC2086), Y.pestis (1: YPO3418, 3: YPO1114).
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of paralogy is available in the Supplementary Data). A total
of 379 predictions are consistent with the clan assignment,
while the remaining three predictions support the exclusion
of R.meliloti 3b from clan 3. Furthermore, comparison with
the clan assignment reveals that the algorithm missed 24
non-orthologous relations, which implies a false-negative
rate of 6.0%.

COG0513 includes various DEAD-box containing RNA
helicases. The phylogenetic analysis of the proteobacterial

data from this group suggests the existence of six clans
(see Figure 5), of which five are formed around the following
proteins from E.coli: (i) the ATP-dependent RNA helicase
SrmB, which is involved in an early assembly step of 50S
ribosomal subunits (26); (ii) the cold-shock DEAD-box pro-
tein A (DeaD), required for cell division and normal cell
growth at low temperature (27); (iii) the DEAD-box RNA
helicase B (RhlB), a component of the RNA degradosome,
which seems to have little activity unless being activated
by the endoribonuclease RNase E (28); (iv) the putative
RNA helicase RhlE, which has been shown to be non-
essential for normal cell growth (29); (v) the ATP-
independent RNA 30!50 helicase DbpA (30) and (vi) the
subgroup includes RNA helicases that are conserved in
some alphaproteobacteria. The algorithm predicted 408
cases of non-orthology, 88.9% of the 459 non-orthologous

Table 2. Predicted non-orthologous relations for the data shown in Figure 4

Predicted non-orthologs Pair of witnesses

A.tumefaciens 2 Buchnera sp. 1 P.aeruginosa 2 + 1
A.tumefaciens 2 E.coli H7 1 P.aeruginosa 2 + 1
A.tumefaciens 2 E.coli K12 acef P.aeruginosa 2 + 1
A.tumefaciens 2 H.influencae 1 P.aeruginosa 2 + 1
A.tumefaciens 2 Neisseria meniningitidis 1 P.aeruginosa 2 + 1
A.tumefaciens 2 P.multocida 1 P.aeruginosa 2 + 1
A.tumefaciens 2 R.loti 4a B.melitensis 2 + 4
A.tumefaciens 2 R.meliloti 4 B.melitensis 2 + 4
A.tumefaciens 2 V.cholerae 1 P.aeruginosa 2 + 1
A.tumefaciens 2 Y.pestis 1 P.aeruginosa 2 + 1
A.tumefaciens 3 B.melitensis 2 Buchnera sp. 3 + 1
A.tumefaciens 3 Buchnera sp. 1 P.aeruginosa 3 + 1
A.tumefaciens 3 P.aeruginosa 2 B. melitensis 3 + 2
A.tumefaciens 3 P.aeruginosa 1 Buchnera sp. 3 + 1
A.tumefaciens 3 P.multocida 1 Buchnera sp. 3 + 1
A.tumefaciens 3 R.conorii 4 B.melitensis 3 + 4
A.tumefaciens 3 R.loti 2 B.melitensis 3 + 2
A.tumefaciens 3 R.loti 4a B.melitensis 3 + 4
A.tumefaciens 3 R.meliloti 2 B.melitensis 3 + 2
A.tumefaciens 3 R.meliloti 4 B.melitensis 3 + 4
A.tumefaciens 3 R.prowazekii 4 B.melitensis 3 + 4
A.tumefaciens 4 B.melitensis 2 R.loti 4a + 2
A.tumefaciens 4 Buchnera sp. 1 B.melitensis 4 + 2
A.tumefaciens 4 E.coli H7 3 B.melitensis 4 + 3
A.tumefaciens 4 E.coli K12 sucB B.melitensis 4 + 3
A.tumefaciens 4 H.influencae 1 R.loti 4a + 2
A.tumefaciens 4 H.influencae 3 B.melitensis 4 + 3
A.tumefaciens 4 N.meniningitidis 1 B.melitensis 4 + 2
A.tumefaciens 4 N.meniningitidis 3 B.melitensis 4 + 3
A.tumefaciens 4 P.aeruginosa 2 B.melitensis 4 + 2
A.tumefaciens 4 P.aeruginosa 3 B.melitensis 4 + 3
A.tumefaciens 4 P.multocida 1 B.melitensis 4 + 2
A.tumefaciens 4 P.multocida 3 B.melitensis 4 + 3
A.tumefaciens 4 R.conorii 3 B.melitensis 4 + 3
A.tumefaciens 4 R. oti 2 B.melitensis 4 + 2
A.tumefaciens 4 R.loti 3 B.melitensis 4 + 3
A.tumefaciens 4 R.meliloti 2 B.melitensis 4 + 2
A.tumefaciens 4 R.meliloti 3a B.melitensis 4 + 3
A.tumefaciens 4 R.prowazekii 3 B.melitensis 4 + 3
A.tumefaciens 4 V.cholerae 3 B.melitensis 4 + 3
A.tumefaciens 4 Y.pestis 3 B.melitensis 4 + 3
B.melitensis 2 E.coli H7 1 P.aeruginosa 2 + 1
B.melitensis 2 E.coli H7 3 A.tumefaciens 2 + 3
B.melitensis 2 E.coli K12 acef P.aeruginosa 2 + 1
B.melitensis 2 E.coli K12 sucB A.tumefaciens 2 + 3
B.melitensis 2 H.influencae 1 P.aeruginosa 2 + 1
B.melitensis 2 H.influencae 3 A.tumefaciens 2 + 3
B.melitensis 2 N.meniningitidis 1 P.aeruginosa 2 + 1
B.melitensis 2 N.meniningitidis 3 A.tumefaciens 2 + 3
B.melitensis 2 P.aeruginosa 3 A.tumefaciens 2 + 3
B.melitensis 2 P.multocida 1 P.aeruginosa 2 + 1
B.melitensis 2 P.multocida 3 A.tumefaciens 2 + 3
B.melitensis 2 R.conorii 3 A.tumefaciens 2 + 3
B.melitensis 2 R.conorii 4 A.tumefaciens 2 + 4
B.melitensis 2 R.loti 3 A.tumefaciens 2 + 3

The sequences in the first two columns are predicted to be non-orthologous by
the pair of witnesses in the third column.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Unrooted phylogenetic consensus tree for COG0513, constructed
from a Bayesian analysis. Posterior probabilities are drawn to the right of the
nodes and clan-supporting bootstrap values are below the relevant nodes. The
vertical bars bars to the right indicate the prediced clans. The leaf labels
correspond to the COG identifiers: A.tumefaciens (2: AGl1362, 5: AGc4238,
6: AGc3366), B.melitensis (2: BMEI1824, 5: BMEI0934, 6: BMEI1035),
E.coli K12 (COG identifier corresponds to the gene name: dbpA, deaD, rhlB,
rhlE, srmB), H.influenzae (1: HI0422, 3: HI0231, 4: HI0892), P.multocida
(1: PM1840, 3: PM1112, 4: PM1921), P.aeruginosa (2: PA0455, 3: PA2840,
4: PA3861, 5: PA0428), R.loti (2: mlr4393, 5: mlr0349, 6: mll0224),
R.meliloti (2: SMc01090, 5: SMb20880, 6: SMc00522), V.cholerae
(1: VC0660, 2: VC2564, 4: VC0305, 5: VCA0204), Y.pestis (1: YPO2708,
2: YPO1776, 3: YPO3488, 4: YPO3869).
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relations that can be deduced from the clan assignment. In
this case, there was no false-positive prediction.

COG1113 consists of members of the amino acid-
polyamine-organo-cation (APC) superfamily from bacteria,
specifically those integral membrane proteins that are
involved in the transport of amino acids in prokaryotes.
The phylogenetic analysis of this group suggests the exis-
tence of various clans (see Figure 6), including those formed
around the seven proteins found in E.coli: (i) phenylalanine-
specific permease (PheP), (ii) aromatic amino acid transport
protein (AroP), (iii) probable transport protein YifK,
(iv) proline-specific permease (ProY), (v) D-serine/D-alanine/
glycine transporter (CycA), (vi) L-asparagine permease

(AnsP), (vii) GABA (4-aminobutyrate) permease (GabP).
The seven clans were predicted with high probability and
their clusterings confirmed by significant bootstrap values
(99–100%) except for one (92%). The analyzed dataset
includes members of quite related organisms, but most
clans can already be populated with further members from
other species of COG1113. The algorithm predicted 257
pairs of non-orthologs, of which 254 are consistent with the
phylogenetic analysis. That represents 97.7% of the 260
non-orthologous relations that can be deduced from the clan
assignment. The conflicting three predictions suggest that
P.aeruginosa 4a is non-orthologous to E.coli K12 ProY and
to E.coli H7 EDL933 4, and that P.aeruginosa 4b is non-
orthologous to Yersinia pestis 4b. But here too, the extension
of the phylogenetic analysis using additional sequences from
the UniProtKB database supports the division of clan 4 into
further subgroups (data not shown).

CONCLUSION

We present here a new algorithm for the detection of non-
orthologous relations caused by the limitations of genome-
specific best hit methods, such as the COGs database. The
algorithm, rather than building gene trees, a process both
computationally expensive and error-prone, works with
pairwise distance estimates. The accuracy of the algorithm
was evaluated through verification of the distribution of
predicted cases, case-by-case phylogenetic analysis and
comparisons with prediction from other projects using
independent methods. Using conservative parameters, the
algorithm detected non-orthology in a third of the COG
groups. Methods sensitive to correct orthology assignments,
such as function prediction, phylogenetic trees or genome
rearrangement analysis, will profit from both the algorithm
and the results presented here.
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