##Criar banco de dados para o bowtie
bowtie-build genoma.fasta nome_da_database
##Mapear
bowtie -n 3 -p 3 -m 1 --best --sam -1 read_1.fastq -2 read_2.fastq nome_da_database > mapped.sam
-n -> numero de mismatches aceitos
-p -> processadores
-m -> numero de alinhamentos por read
--best -> mostra só o melhor alinhamento
--sam -> output em formato SAM
##Criar formato BAM
samtools faidx genoma.fasta
samtools import genoma.fasta.fai mapped.sam mapped.bam
samtools sort mapped.bam mapped.sorted
samtools index mapped.sorted.bam
##Quantificando
bedtools multicov -bams mapped1.sorted.bam mapped2.sorted.bam mapped3.sorted.bam ... mappedN.sorted.bam -bed genoma.gff > counts
cat aula.count | cut -f9- > data.table
##Estatística
R
##Carregar a bibliotecas
library(DESeq2)
library(gplots)
##Ler a tabela de contagens
data = read.table(file=‘data.table’, head=F, sep="\t", row.names=1)
##Definir o nome das colunas (nome das amostras)
colnames(data) = c("CI", "CII", "CIII", "CMI", "CMII", "CMIII", "RI", "RII", "RIII", "RMI", "RMIII")
##Montar uma tabela com os metadados
treatment = c("Control", "Control", "Control", "Control", "Control", "Control", "Resist", "Resist", "Resist", "Resist", "Resist")
antibiotc = c("no", "no", "no", "yes", "yes", "yes", "no", "no", "no", "yes", "yes")
metadata = data.frame(treatment=as.factor(treatment), antibiotc=as.factor(antibiotc))
rownames(metadata)=c("CI", "CII", "CIII", "CMI", "CMII", "CMIII", "RI", "RII", "RIII", "RMI", "RMIII")
metadata$treatment=relevel(metadata$treatment, "Control")
metadata$antibiotc=relevel(metadata$antibiotc, “no”)
##Fazer a análise estatística
ddsData = DESeqDataSetFromMatrix(data, colData, formula (~ treatment))
dds = DESeq(ddsData)
res = results(dds)
select = which(res$padj<0.01)
rld <- rlogTransformation(dds, blind=TRUE)
vsd <- varianceStabilizingTransformation(dds, blind=TRUE)
plotMA(res, main="DESeq2", ylim=c(-3,3), alpha=0.01)
abline(h=-1, col="blue")
abline(h=1, col="blue")
distsRL <- dist(t(assay(rld)))
mat <- as.matrix(distsRL)
rownames(mat) <- colnames(mat) <- with(colData(dds), colnames(data))
heatmap.2(mat, trace="none", margin=c(5, 5))